diff --git a/.buildkite/lm-eval-harness/configs/Meta-Llama-3.2-1B-Instruct-INT8-compressed-tensors.yaml b/.buildkite/lm-eval-harness/configs/Meta-Llama-3.2-1B-Instruct-INT8-compressed-tensors.yaml new file mode 100644 index 0000000000000..78347f63fa793 --- /dev/null +++ b/.buildkite/lm-eval-harness/configs/Meta-Llama-3.2-1B-Instruct-INT8-compressed-tensors.yaml @@ -0,0 +1,11 @@ +# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m neuralmagic/Llama-3.2-1B-Instruct-quantized.w8a8 -b "auto" -l 1000 -f 5 -t 1 +model_name: "neuralmagic/Llama-3.2-1B-Instruct-quantized.w8a8" +tasks: +- name: "gsm8k" + metrics: + - name: "exact_match,strict-match" + value: 0.356 + - name: "exact_match,flexible-extract" + value: 0.358 +limit: 1000 +num_fewshot: 5 diff --git a/.buildkite/lm-eval-harness/configs/models-small.txt b/.buildkite/lm-eval-harness/configs/models-small.txt index 64a0f428587af..6057229ac50f3 100644 --- a/.buildkite/lm-eval-harness/configs/models-small.txt +++ b/.buildkite/lm-eval-harness/configs/models-small.txt @@ -1,6 +1,6 @@ Meta-Llama-3-8B-Instruct.yaml Meta-Llama-3-8B-Instruct-FP8-compressed-tensors.yaml -Meta-Llama-3-8B-Instruct-INT8-compressed-tensors.yaml +Meta-Llama-3.2-1B-Instruct-INT8-compressed-tensors.yaml Meta-Llama-3-8B-Instruct-INT8-compressed-tensors-asym.yaml Meta-Llama-3-8B-Instruct-nonuniform-compressed-tensors.yaml Meta-Llama-3-8B-Instruct-Channelwise-compressed-tensors.yaml diff --git a/.buildkite/lm-eval-harness/run-lm-eval-gsm-hf-baseline.sh b/.buildkite/lm-eval-harness/run-lm-eval-gsm-hf-baseline.sh index fdb8ec5393b36..b2e910e1ba8a7 100644 --- a/.buildkite/lm-eval-harness/run-lm-eval-gsm-hf-baseline.sh +++ b/.buildkite/lm-eval-harness/run-lm-eval-gsm-hf-baseline.sh @@ -2,7 +2,7 @@ # We can use this script to compute baseline accuracy on GSM for transformers. # # Make sure you have lm-eval-harness installed: -# pip install git+https://github.com/EleutherAI/lm-evaluation-harness.git@9516087b81a61d0e220b22cc1b75be76de23bc10 +# pip install lm-eval==0.4.4 usage() { echo`` diff --git a/.buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh b/.buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh index de841d959a4e4..4d32b49a4fac3 100644 --- a/.buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh +++ b/.buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh @@ -3,7 +3,7 @@ # We use this for fp8, which HF does not support. # # Make sure you have lm-eval-harness installed: -# pip install lm-eval==0.4.3 +# pip install lm-eval==0.4.4 usage() { echo`` diff --git a/.buildkite/nightly-benchmarks/nightly-annotation.md b/.buildkite/nightly-benchmarks/nightly-annotation.md new file mode 100644 index 0000000000000..1e33793842bf8 --- /dev/null +++ b/.buildkite/nightly-benchmarks/nightly-annotation.md @@ -0,0 +1,28 @@ + +## Description + +This file contains the downloading link for benchmarking results. + +- [benchmarking pipeline](artifact://nightly-pipeline.yaml) +- [benchmarking results](artifact://results.zip) +- [benchmarking code](artifact://nightly-benchmarks.zip) + +Please download the visualization scripts in the post + + +## Results reproduction + +- Find the docker we use in `benchmarking pipeline` +- Deploy the docker, and inside the docker: + - Download `nightly-benchmarks.zip`. + - In the same folder, run the following code +``` +export HF_TOKEN= +apt update +apt install -y git +unzip nightly-benchmarks.zip +VLLM_SOURCE_CODE_LOC=./ bash .buildkite/nightly-benchmarks/scripts/run-nightly-benchmarks.sh +``` + +And the results will be inside `./benchmarks/results`. + diff --git a/.buildkite/nightly-benchmarks/nightly-descriptions.md b/.buildkite/nightly-benchmarks/nightly-descriptions.md index c3d3cbf473968..7dec7a0fe0b4e 100644 --- a/.buildkite/nightly-benchmarks/nightly-descriptions.md +++ b/.buildkite/nightly-benchmarks/nightly-descriptions.md @@ -1,45 +1,39 @@ # Nightly benchmark -The main goal of this benchmarking is two-fold: -- Performance clarity: Provide clarity on which one (vllm, tensorrt-llm, lmdeploy and tgi) leads in performance in what workload. -- Reproducible: one can run the exact same set of benchmarking commands inside the exact same docker by following reproducing instructions in [reproduce.md](). - - -## Docker images - -We benchmark vllm, tensorrt-llm, lmdeploy and tgi using the following docker images: -- vllm/vllm-openai:v0.5.0.post1 -- nvcr.io/nvidia/tritonserver:24.04-trtllm-python-py3 -- openmmlab/lmdeploy:v0.5.0 -- ghcr.io/huggingface/text-generation-inference:2.1 - - - - -## Hardware - -One AWS node with 8x NVIDIA A100 GPUs. - - -## Workload description - -We benchmark vllm, tensorrt-llm, lmdeploy and tgi using the following workload: - -- Input length: randomly sample 500 prompts from ShareGPT dataset (with fixed random seed). -- Output length: the corresponding output length of these 500 prompts. -- Models: llama-3 8B, llama-3 70B, mixtral 8x7B. -- Average QPS (query per second): 4 for the small model (llama-3 8B) and 2 for other two models. For each QPS, the arrival time of each query is determined using a random Poisson process (with fixed random seed). -- Evaluation metrics: Throughput (higher the better), TTFT (time to the first token, lower the better), ITL (inter-token latency, lower the better). - - - -## Plots - -In the following plots, the dot shows the mean and the error bar shows the standard error of the mean. Value 0 means that the corresponding benchmark crashed. - -Benchmarking results - -## Results - -{nightly_results_benchmarking_table} +This benchmark aims to: +- Provide performance clarity: Provide clarity on which one (vllm, tensorrt-llm, lmdeploy and SGLang) leads in performance in what workload. +- Be reproducible: one can run the exact same set of benchmarking commands inside the exact same docker by following reproducing instructions. + +Latest results: [results link](https://blog.vllm.ai/2024/09/05/perf-update.html), scroll to the end. + +Latest reproduction guilde: [github issue link](https://github.com/vllm-project/vllm/issues/8176) + + +## Setup + +- Docker images: + - vLLM: `vllm/vllm-openai:v0.6.2` + - SGLang: `lmsysorg/sglang:v0.3.2-cu121` + - LMDeploy: `openmmlab/lmdeploy:v0.6.1-cu12` + - TensorRT-LLM: `nvcr.io/nvidia/tritonserver:24.07-trtllm-python-py3` + - *NOTE: we uses r24.07 as the current implementation only works for this version. We are going to bump this up.* + - Check [nightly-pipeline.yaml](nightly-pipeline.yaml) for the concrete docker images, specs and commands we use for the benchmark. +- Hardware + - 8x Nvidia A100 GPUs +- Workload: + - Dataset + - ShareGPT dataset + - Prefill-heavy dataset (in average 462 input tokens, 16 tokens as output) + - Decode-heavy dataset (in average 462 input tokens, 256 output tokens) + - Check [nightly-tests.json](tests/nightly-tests.json) for the concrete configuration of datasets we use. + - Models: llama-3 8B, llama-3 70B. + - We do not use llama 3.1 as it is incompatible with trt-llm r24.07. ([issue](https://github.com/NVIDIA/TensorRT-LLM/issues/2105)). + - Average QPS (query per second): 2, 4, 8, 16, 32 and inf. + - Queries are randomly sampled, and arrival patterns are determined via Poisson process, but all with fixed random seed. + - Evaluation metrics: Throughput (higher the better), TTFT (time to the first token, lower the better), ITL (inter-token latency, lower the better). + +# Known issues + +- TRT-LLM crashes with Llama 3.1 8B [issue](https://github.com/NVIDIA/TensorRT-LLM/issues/2105). +- TGI does not support `ignore-eos` flag. \ No newline at end of file diff --git a/.buildkite/nightly-benchmarks/nightly-pipeline.yaml b/.buildkite/nightly-benchmarks/nightly-pipeline.yaml index 6e399bb936fbc..199517e8b067c 100644 --- a/.buildkite/nightly-benchmarks/nightly-pipeline.yaml +++ b/.buildkite/nightly-benchmarks/nightly-pipeline.yaml @@ -13,7 +13,7 @@ common_pod_spec: &common_pod_spec common_container_settings: &common_container_settings command: - - bash .buildkite/nightly-benchmarks/run-nightly-suite.sh + - bash .buildkite/nightly-benchmarks/scripts/run-nightly-benchmarks.sh resources: limits: nvidia.com/gpu: 8 @@ -37,7 +37,10 @@ common_container_settings: &common_container_settings steps: - block: ":rocket: Ready for comparing vllm against alternatives? This will take 4 hours." - - label: "A100 trt benchmark" + + + + - label: "A100 vllm step 10" priority: 100 agents: queue: A100 @@ -46,7 +49,21 @@ steps: podSpec: <<: *common_pod_spec containers: - - image: nvcr.io/nvidia/tritonserver:24.04-trtllm-python-py3 + - image: vllm/vllm-openai:v0.6.2 + <<: *common_container_settings + + + + - label: "A100 sglang benchmark" + priority: 100 + agents: + queue: A100 + plugins: + - kubernetes: + podSpec: + <<: *common_pod_spec + containers: + - image: lmsysorg/sglang:v0.3.2-cu121 <<: *common_container_settings - label: "A100 lmdeploy benchmark" @@ -58,11 +75,13 @@ steps: podSpec: <<: *common_pod_spec containers: - - image: openmmlab/lmdeploy:v0.5.0 + - image: openmmlab/lmdeploy:v0.6.1-cu12 <<: *common_container_settings - - - label: "A100 vllm benchmark" + + + + - label: "A100 trt llama-8B" priority: 100 agents: queue: A100 @@ -71,10 +90,25 @@ steps: podSpec: <<: *common_pod_spec containers: - - image: vllm/vllm-openai:latest + - image: nvcr.io/nvidia/tritonserver:24.07-trtllm-python-py3 <<: *common_container_settings + env: + - name: VLLM_USAGE_SOURCE + value: ci-test + - name: HF_HOME + value: /root/.cache/huggingface + - name: VLLM_SOURCE_CODE_LOC + value: /workspace/build/buildkite/vllm/performance-benchmark + - name: HF_TOKEN + valueFrom: + secretKeyRef: + name: hf-token-secret + key: token + - name: TEST_SELECTOR + value: "llama8B" - - label: "A100 tgi benchmark" + + - label: "A100 trt llama-70B" priority: 100 agents: queue: A100 @@ -83,12 +117,54 @@ steps: podSpec: <<: *common_pod_spec containers: - - image: ghcr.io/huggingface/text-generation-inference:2.1 + - image: nvcr.io/nvidia/tritonserver:24.07-trtllm-python-py3 <<: *common_container_settings + env: + - name: VLLM_USAGE_SOURCE + value: ci-test + - name: HF_HOME + value: /root/.cache/huggingface + - name: VLLM_SOURCE_CODE_LOC + value: /workspace/build/buildkite/vllm/performance-benchmark + - name: HF_TOKEN + valueFrom: + secretKeyRef: + name: hf-token-secret + key: token + - name: TEST_SELECTOR + value: "llama70B" + + + # FIXME(Kuntai): uncomment this after NVIDIA gives us their test docker image + # - label: "A100 trt benchmark" + # priority: 100 + # agents: + # queue: A100 + # plugins: + # - kubernetes: + # podSpec: + # <<: *common_pod_spec + # containers: + # - image: nvcr.io/nvidia/tritonserver:24.07-trtllm-python-py3 + # <<: *common_container_settings + + + # FIXME(Kuntai): uncomment this after TGI supports `--ignore-eos`. + # - label: "A100 tgi benchmark" + # priority: 100 + # agents: + # queue: A100 + # plugins: + # - kubernetes: + # podSpec: + # <<: *common_pod_spec + # containers: + # - image: ghcr.io/huggingface/text-generation-inference:2.2.0 + # <<: *common_container_settings - wait - - label: "Plot" + - label: "Collect the results" priority: 100 agents: queue: A100 @@ -117,4 +193,4 @@ steps: name: hf-token-secret key: token - - wait \ No newline at end of file + - block: ":rocket: check the results!" \ No newline at end of file diff --git a/.buildkite/nightly-benchmarks/run-nightly-suite.sh b/.buildkite/nightly-benchmarks/run-nightly-suite.sh deleted file mode 100644 index 627a3e6971578..0000000000000 --- a/.buildkite/nightly-benchmarks/run-nightly-suite.sh +++ /dev/null @@ -1,76 +0,0 @@ -#!/bin/bash - -set -o pipefail -set -x - -check_gpus() { - # check the number of GPUs and GPU type. - declare -g gpu_count=$(nvidia-smi --list-gpus | wc -l) - if [[ $gpu_count -gt 0 ]]; then - echo "GPU found." - else - echo "Need at least 1 GPU to run benchmarking." - exit 1 - fi - declare -g gpu_type=$(echo $(nvidia-smi --query-gpu=name --format=csv,noheader) | awk '{print $2}') - echo "GPU type is $gpu_type" -} - -check_hf_token() { - # check if HF_TOKEN is available and valid - if [[ -z "$HF_TOKEN" ]]; then - echo "Error: HF_TOKEN is not set." - exit 1 - elif [[ ! "$HF_TOKEN" =~ ^hf_ ]]; then - echo "Error: HF_TOKEN does not start with 'hf_'." - exit 1 - else - echo "HF_TOKEN is set and valid." - fi -} - -main() { - - check_gpus - check_hf_token - - df -h - - (which wget && which curl) || (apt-get update && apt-get install -y wget curl) - (which jq) || (apt-get update && apt-get -y install jq) - - cd $VLLM_SOURCE_CODE_LOC/benchmarks - wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json - - - # run lmdeploy - if which lmdeploy >/dev/null; then - echo "lmdeploy is available, redirect to run-lmdeploy-nightly.sh" - bash ../.buildkite/nightly-benchmarks/scripts/run-lmdeploy-nightly.sh - exit 0 - fi - - # run tgi - if [ -e /tgi-entrypoint.sh ]; then - echo "tgi is available, redirect to run-tgi-nightly.sh" - bash ../.buildkite/nightly-benchmarks/scripts/run-tgi-nightly.sh - exit 0 - fi - - # run trt - if which trtllm-build >/dev/null; then - echo "trtllm is available, redirect to run-trt-nightly.sh" - bash ../.buildkite/nightly-benchmarks/scripts/run-trt-nightly.sh - exit 0 - fi - - # run vllm - if [ -e /vllm-workspace ]; then - echo "vllm is available, redirect to run-vllm-nightly.sh" - bash ../.buildkite/nightly-benchmarks/scripts/run-vllm-nightly.sh - exit 0 - fi - -} - -main "$@" \ No newline at end of file diff --git a/.buildkite/nightly-benchmarks/scripts/generate-nightly-markdown.py b/.buildkite/nightly-benchmarks/scripts/generate-nightly-markdown.py new file mode 100644 index 0000000000000..6059588fe7277 --- /dev/null +++ b/.buildkite/nightly-benchmarks/scripts/generate-nightly-markdown.py @@ -0,0 +1,95 @@ +import argparse +import json +from pathlib import Path + +import numpy as np +import pandas as pd +from tabulate import tabulate + + +def parse_arguments(): + parser = argparse.ArgumentParser( + description= + 'Parse command line arguments for summary-nightly-results script.') + parser.add_argument('--results-folder', + type=str, + required=True, + help='The folder where the results are stored.') + parser.add_argument('--description', + type=str, + required=True, + help='Description of the results.') + + args = parser.parse_args() + return args + + +def get_perf(df, method, model, metric): + + means = [] + + for qps in [2, 4, 8, 16, "inf"]: + target = df['Test name'].str.contains(model) + target = target & df['Engine'].str.contains(method) + target = target & df['Test name'].str.contains("qps_" + str(qps)) + filtered_df = df[target] + + if filtered_df.empty: + means.append(0.) + else: + means.append(filtered_df[metric].values[0]) + + return np.array(means) + + +def get_perf_w_std(df, method, model, metric): + + if metric in ["TTFT", "ITL"]: + mean = get_perf(df, method, model, "Mean " + metric + " (ms)") + mean = mean.tolist() + std = get_perf(df, method, model, "Std " + metric + " (ms)") + if std.mean() == 0: + std = None + success = get_perf(df, method, model, "Successful req.") + if std is not None: + std = std / np.sqrt(success) + std = std.tolist() + + else: + assert metric == "Tput" + mean = get_perf(df, method, model, "Input Tput (tok/s)") + get_perf( + df, method, model, "Output Tput (tok/s)") + mean = mean.tolist() + std = None + + return mean, std + + +def main(args): + results_folder = Path(args.results_folder) + + results = [] + + # collect results + for test_file in results_folder.glob("*_nightly_results.json"): + with open(test_file, "r") as f: + results = results + json.loads(f.read()) + + # generate markdown table + df = pd.DataFrame.from_dict(results) + + md_table = tabulate(df, headers='keys', tablefmt='pipe', showindex=False) + + with open(args.description, "r") as f: + description = f.read() + + description = description.format( + nightly_results_benchmarking_table=md_table) + + with open("nightly_results.md", "w") as f: + f.write(description) + + +if __name__ == '__main__': + args = parse_arguments() + main(args) diff --git a/.buildkite/nightly-benchmarks/scripts/launch-server.sh b/.buildkite/nightly-benchmarks/scripts/launch-server.sh new file mode 100644 index 0000000000000..e9d7d6a8d760a --- /dev/null +++ b/.buildkite/nightly-benchmarks/scripts/launch-server.sh @@ -0,0 +1,241 @@ +#!/bin/bash + +# Currently FP8 benchmark is NOT enabled. + +set -x +server_params=$1 +common_params=$2 + +json2args() { + # transforms the JSON string to command line args, and '_' is replaced to '-' + # example: + # input: { "model": "meta-llama/Llama-2-7b-chat-hf", "tensor_parallel_size": 1 } + # output: --model meta-llama/Llama-2-7b-chat-hf --tensor-parallel-size 1 + local json_string=$1 + local args=$( + echo "$json_string" | jq -r ' + to_entries | + map("--" + (.key | gsub("_"; "-")) + " " + (.value | tostring)) | + join(" ") + ' + ) + echo "$args" +} + +launch_trt_server() { + + model_path=$(echo "$common_params" | jq -r '.model') + model_name="${model_path#*/}" + model_type=$(echo "$server_params" | jq -r '.model_type') + model_dtype=$(echo "$server_params" | jq -r '.model_dtype') + model_tp_size=$(echo "$common_params" | jq -r '.tp') + max_batch_size=$(echo "$server_params" | jq -r '.max_batch_size') + max_input_len=$(echo "$server_params" | jq -r '.max_input_len') + max_seq_len=$(echo "$server_params" | jq -r '.max_seq_len') + max_num_tokens=$(echo "$server_params" | jq -r '.max_num_tokens') + trt_llm_version=$(echo "$server_params" | jq -r '.trt_llm_version') + + # create model caching directory + cd ~ + rm -rf models + mkdir -p models + cd models + models_dir=$(pwd) + trt_model_path=${models_dir}/${model_name}-trt-ckpt + trt_engine_path=${models_dir}/${model_name}-trt-engine + + # clone tensorrt backend + cd / + rm -rf tensorrtllm_backend + git clone https://github.com/triton-inference-server/tensorrtllm_backend.git + git lfs install + cd tensorrtllm_backend + git checkout $trt_llm_version + tensorrtllm_backend_dir=$(pwd) + git submodule update --init --recursive + + # build trtllm engine + cd /tensorrtllm_backend + cd ./tensorrt_llm/examples/${model_type} + python3 convert_checkpoint.py \ + --model_dir ${model_path} \ + --dtype ${model_dtype} \ + --tp_size ${model_tp_size} \ + --output_dir ${trt_model_path} + trtllm-build \ + --checkpoint_dir ${trt_model_path} \ + --use_fused_mlp \ + --reduce_fusion disable \ + --workers 8 \ + --gpt_attention_plugin ${model_dtype} \ + --gemm_plugin ${model_dtype} \ + --tp_size ${model_tp_size} \ + --max_batch_size ${max_batch_size} \ + --max_input_len ${max_input_len} \ + --max_seq_len ${max_seq_len} \ + --max_num_tokens ${max_num_tokens} \ + --output_dir ${trt_engine_path} + + # handle triton protobuf files and launch triton server + cd /tensorrtllm_backend + mkdir triton_model_repo + cp -r all_models/inflight_batcher_llm/* triton_model_repo/ + cd triton_model_repo + rm -rf ./tensorrt_llm/1/* + cp -r ${trt_engine_path}/* ./tensorrt_llm/1 + python3 ../tools/fill_template.py -i tensorrt_llm/config.pbtxt triton_backend:tensorrtllm,engine_dir:/tensorrtllm_backend/triton_model_repo/tensorrt_llm/1,decoupled_mode:true,batching_strategy:inflight_fused_batching,batch_scheduler_policy:guaranteed_no_evict,exclude_input_in_output:true,triton_max_batch_size:2048,max_queue_delay_microseconds:0,max_beam_width:1,max_queue_size:2048,enable_kv_cache_reuse:false + python3 ../tools/fill_template.py -i preprocessing/config.pbtxt triton_max_batch_size:2048,tokenizer_dir:$model_path,preprocessing_instance_count:5 + python3 ../tools/fill_template.py -i postprocessing/config.pbtxt triton_max_batch_size:2048,tokenizer_dir:$model_path,postprocessing_instance_count:5,skip_special_tokens:false + python3 ../tools/fill_template.py -i ensemble/config.pbtxt triton_max_batch_size:$max_batch_size + python3 ../tools/fill_template.py -i tensorrt_llm_bls/config.pbtxt triton_max_batch_size:$max_batch_size,decoupled_mode:true,accumulate_tokens:"False",bls_instance_count:1 + cd /tensorrtllm_backend + python3 scripts/launch_triton_server.py \ + --world_size=${model_tp_size} \ + --model_repo=/tensorrtllm_backend/triton_model_repo & + +} + +launch_tgi_server() { + model=$(echo "$common_params" | jq -r '.model') + tp=$(echo "$common_params" | jq -r '.tp') + dataset_name=$(echo "$common_params" | jq -r '.dataset_name') + dataset_path=$(echo "$common_params" | jq -r '.dataset_path') + port=$(echo "$common_params" | jq -r '.port') + num_prompts=$(echo "$common_params" | jq -r '.num_prompts') + server_args=$(json2args "$server_params") + + if echo "$common_params" | jq -e 'has("fp8")' >/dev/null; then + echo "Key 'fp8' exists in common params." + server_command="/tgi-entrypoint.sh \ + --model-id $model \ + --num-shard $tp \ + --port $port \ + --quantize fp8 \ + $server_args" + else + echo "Key 'fp8' does not exist in common params." + server_command="/tgi-entrypoint.sh \ + --model-id $model \ + --num-shard $tp \ + --port $port \ + $server_args" + fi + + echo "Server command: $server_command" + eval "$server_command" & + +} + +launch_lmdeploy_server() { + model=$(echo "$common_params" | jq -r '.model') + tp=$(echo "$common_params" | jq -r '.tp') + dataset_name=$(echo "$common_params" | jq -r '.dataset_name') + dataset_path=$(echo "$common_params" | jq -r '.dataset_path') + port=$(echo "$common_params" | jq -r '.port') + num_prompts=$(echo "$common_params" | jq -r '.num_prompts') + server_args=$(json2args "$server_params") + + server_command="lmdeploy serve api_server $model \ + --tp $tp \ + --server-port $port \ + $server_args" + + # run the server + echo "Server command: $server_command" + bash -c "$server_command" & +} + +launch_sglang_server() { + + model=$(echo "$common_params" | jq -r '.model') + tp=$(echo "$common_params" | jq -r '.tp') + dataset_name=$(echo "$common_params" | jq -r '.dataset_name') + dataset_path=$(echo "$common_params" | jq -r '.dataset_path') + port=$(echo "$common_params" | jq -r '.port') + num_prompts=$(echo "$common_params" | jq -r '.num_prompts') + server_args=$(json2args "$server_params") + + if echo "$common_params" | jq -e 'has("fp8")' >/dev/null; then + echo "Key 'fp8' exists in common params. Use neuralmagic fp8 model for convenience." + model=$(echo "$common_params" | jq -r '.neuralmagic_quantized_model') + server_command="python3 \ + -m sglang.launch_server \ + --tp $tp \ + --model-path $model \ + --port $port \ + $server_args" + else + echo "Key 'fp8' does not exist in common params." + server_command="python3 \ + -m sglang.launch_server \ + --tp $tp \ + --model-path $model \ + --port $port \ + $server_args" + fi + + # run the server + echo "Server command: $server_command" + eval "$server_command" & +} + +launch_vllm_server() { + + export VLLM_HOST_IP=$(hostname -I | awk '{print $1}') + + model=$(echo "$common_params" | jq -r '.model') + tp=$(echo "$common_params" | jq -r '.tp') + dataset_name=$(echo "$common_params" | jq -r '.dataset_name') + dataset_path=$(echo "$common_params" | jq -r '.dataset_path') + port=$(echo "$common_params" | jq -r '.port') + num_prompts=$(echo "$common_params" | jq -r '.num_prompts') + server_args=$(json2args "$server_params") + + if echo "$common_params" | jq -e 'has("fp8")' >/dev/null; then + echo "Key 'fp8' exists in common params. Use neuralmagic fp8 model for convenience." + model=$(echo "$common_params" | jq -r '.neuralmagic_quantized_model') + server_command="python3 \ + -m vllm.entrypoints.openai.api_server \ + -tp $tp \ + --model $model \ + --port $port \ + $server_args" + else + echo "Key 'fp8' does not exist in common params." + server_command="python3 \ + -m vllm.entrypoints.openai.api_server \ + -tp $tp \ + --model $model \ + --port $port \ + $server_args" + fi + + # run the server + echo "Server command: $server_command" + eval "$server_command" & +} + +main() { + + if [[ $CURRENT_LLM_SERVING_ENGINE == "trt" ]]; then + launch_trt_server + fi + + if [[ $CURRENT_LLM_SERVING_ENGINE == "tgi" ]]; then + launch_tgi_server + fi + + if [[ $CURRENT_LLM_SERVING_ENGINE == "lmdeploy" ]]; then + launch_lmdeploy_server + fi + + if [[ $CURRENT_LLM_SERVING_ENGINE == "sglang" ]]; then + launch_sglang_server + fi + + if [[ "$CURRENT_LLM_SERVING_ENGINE" == *"vllm"* ]]; then + launch_vllm_server + fi +} + +main diff --git a/.buildkite/nightly-benchmarks/scripts/launch-trt-server.sh b/.buildkite/nightly-benchmarks/scripts/launch-trt-server.sh deleted file mode 100644 index f8262653a6628..0000000000000 --- a/.buildkite/nightly-benchmarks/scripts/launch-trt-server.sh +++ /dev/null @@ -1,102 +0,0 @@ -#!/bin/bash - - -server_params=$1 -common_params=$2 - - - -model_path=$(echo "$common_params" | jq -r '.model') -model_name="${model_path#*/}" -model_type=$(echo "$server_params" | jq -r '.model_type') -model_dtype=$(echo "$server_params" | jq -r '.model_dtype') -model_tp_size=$(echo "$common_params" | jq -r '.tp') -max_batch_size=$(echo "$server_params" | jq -r '.max_batch_size') -max_input_len=$(echo "$server_params" | jq -r '.max_input_len') -max_output_len=$(echo "$server_params" | jq -r '.max_output_len') -trt_llm_version=$(echo "$server_params" | jq -r '.trt_llm_version') - -cd ~ -rm -rf models -mkdir -p models -cd models -models_dir=$(pwd) -trt_model_path=${models_dir}/${model_name}-trt-ckpt -trt_engine_path=${models_dir}/${model_name}-trt-engine - -cd ~ -rm -rf tensorrt-demo -git clone https://github.com/neuralmagic/tensorrt-demo.git -cd tensorrt-demo -tensorrt_demo_dir=$(pwd) - -# make sure the parameter inside tensorrt_demo is consistent to envvar -sed -i.bak "/key: \"tokenizer_dir\"/,/string_value:/s|string_value: \".*\"|string_value: \"$model_path\"|" ./triton_model_repo/postprocessing/config.pbtxt -sed -i.bak "/key: \"tokenizer_dir\"/,/string_value:/s|string_value: \".*\"|string_value: \"$model_path\"|" ./triton_model_repo/preprocessing/config.pbtxt -sed -i.bak "s|\(max_batch_size:\s*\)[0-9]*|\1$max_batch_size|g" ./triton_model_repo/ensemble/config.pbtxt -sed -i.bak "s|\(max_batch_size:\s*\)[0-9]*|\1$max_batch_size|g" ./triton_model_repo/preprocessing/config.pbtxt -sed -i.bak "s|\(max_batch_size:\s*\)[0-9]*|\1$max_batch_size|g" ./triton_model_repo/postprocessing/config.pbtxt -sed -i.bak "s|\(max_batch_size:\s*\)[0-9]*|\1$max_batch_size|g" ./triton_model_repo/tensorrt_llm_bls/config.pbtxt - - -cd / -rm -rf tensorrtllm_backend -git clone https://github.com/triton-inference-server/tensorrtllm_backend.git -git lfs install -cd tensorrtllm_backend -git checkout $trt_llm_version -tensorrtllm_backend_dir=$(pwd) -git submodule update --init --recursive -cp -r ${tensorrt_demo_dir}/triton_model_repo ${tensorrtllm_backend_dir}/ - -cd /tensorrtllm_backend -cd ./tensorrt_llm/examples/${model_type} - - -if echo "$common_params" | jq -e 'has("fp8")' > /dev/null; then - - echo "Key 'fp8' exists in common params. Use quantize.py instead of convert_checkpoint.py" - echo "Reference: https://github.com/NVIDIA/TensorRT-LLM/blob/main/examples/llama/README.md" - python ../quantization/quantize.py \ - --model_dir ${model_path} \ - --dtype ${model_dtype} \ - --tp_size ${model_tp_size} \ - --output_dir ${trt_model_path} \ - --qformat fp8 \ - --kv_cache_dtype fp8 \ - --calib_size 2 - -else - - echo "Key 'fp8' does not exist in common params. Use convert_checkpoint.py" - python3 convert_checkpoint.py \ - --model_dir ${model_path} \ - --dtype ${model_dtype} \ - --tp_size ${model_tp_size} \ - --output_dir ${trt_model_path} - -fi - - - -trtllm-build \ ---checkpoint_dir=${trt_model_path} \ ---gpt_attention_plugin=${model_dtype} \ ---gemm_plugin=${model_dtype} \ ---remove_input_padding=enable \ ---paged_kv_cache=enable \ ---tp_size=${model_tp_size} \ ---max_batch_size=${max_batch_size} \ ---max_input_len=${max_input_len} \ ---max_output_len=${max_output_len} \ ---max_num_tokens=${max_output_len} \ ---opt_num_tokens=${max_output_len} \ ---output_dir=${trt_engine_path} - -cd /tensorrtllm_backend/triton_model_repo -rm -rf ./tensorrt_llm/1/* -cp -r ${trt_engine_path}/* ./tensorrt_llm/1 -cd /tensorrtllm_backend -python3 scripts/launch_triton_server.py \ ---world_size=${model_tp_size} \ ---model_repo=/tensorrtllm_backend/triton_model_repo & \ No newline at end of file diff --git a/.buildkite/nightly-benchmarks/scripts/nightly-annotate.sh b/.buildkite/nightly-benchmarks/scripts/nightly-annotate.sh index 1168912c6e229..c6a1bbdeb7d48 100644 --- a/.buildkite/nightly-benchmarks/scripts/nightly-annotate.sh +++ b/.buildkite/nightly-benchmarks/scripts/nightly-annotate.sh @@ -8,6 +8,7 @@ main() { (which wget && which curl) || (apt-get update && apt-get install -y wget curl) (which jq) || (apt-get update && apt-get -y install jq) + (which zip) || (apt-get install -y zip) if [ ! -f /workspace/buildkite-agent ]; then echo "buildkite-agent binary not found. Skip plotting the results." @@ -24,17 +25,54 @@ main() { ls ls results/ - # generate figures - python3 -m pip install tabulate pandas matplotlib - python3 $VLLM_SOURCE_CODE_LOC/.buildkite/nightly-benchmarks/scripts/plot-nightly-results.py \ - --description $description \ - --results-folder results/ + # upload benchmark results + zip -r results.zip results/ + /workspace/buildkite-agent artifact upload "results.zip" + + # upload benchmarking scripts + cd $VLLM_SOURCE_CODE_LOC/ + zip -r nightly-benchmarks.zip .buildkite/ benchmarks/ + /workspace/buildkite-agent artifact upload "nightly-benchmarks.zip" + + cd $VLLM_SOURCE_CODE_LOC/.buildkite/nightly-benchmarks/ + # upload benchmarking pipeline + /workspace/buildkite-agent artifact upload "nightly-pipeline.yaml" + + cd $VLLM_SOURCE_CODE_LOC/.buildkite/nightly-benchmarks/ + /workspace/buildkite-agent annotate --style "success" --context "nightly-benchmarks-results" --append < nightly-annotation.md + + + + # The figures should be genereated by a separate process outside the CI/CD pipeline + + # # generate figures + # python3 -m pip install tabulate pandas matplotlib + + # python3 $VLLM_SOURCE_CODE_LOC/.buildkite/nightly-benchmarks/scripts/generate-nightly-markdown.py \ + # --description $description \ + # --results-folder results/ + + + # python3 $VLLM_SOURCE_CODE_LOC/.buildkite/nightly-benchmarks/scripts/plot-nightly-results.py \ + # --description $description \ + # --results-folder results/ \ + # --dataset sharegpt + + # python3 $VLLM_SOURCE_CODE_LOC/.buildkite/nightly-benchmarks/scripts/plot-nightly-results.py \ + # --description $description \ + # --results-folder results/ \ + # --dataset sonnet_2048_128 + + # python3 $VLLM_SOURCE_CODE_LOC/.buildkite/nightly-benchmarks/scripts/plot-nightly-results.py \ + # --description $description \ + # --results-folder results/ \ + # --dataset sonnet_128_2048 - # upload results and figures - /workspace/buildkite-agent artifact upload "nightly_results.png" - /workspace/buildkite-agent artifact upload $VLLM_SOURCE_CODE_LOC/.buildkite/nightly-benchmarks/nightly-pipeline.yaml - /workspace/buildkite-agent artifact upload $VLLM_SOURCE_CODE_LOC/.buildkite/nightly-benchmarks/tests/nightly-tests.json - /workspace/buildkite-agent annotate --style "success" --context "nightly-benchmarks-results" --append < nightly_results.md + # # upload results and figures + # /workspace/buildkite-agent artifact upload "nightly_results*.png" + # /workspace/buildkite-agent artifact upload $VLLM_SOURCE_CODE_LOC/.buildkite/nightly-benchmarks/nightly-pipeline.yaml + # /workspace/buildkite-agent artifact upload $VLLM_SOURCE_CODE_LOC/.buildkite/nightly-benchmarks/tests/nightly-tests.json + # /workspace/buildkite-agent annotate --style "success" --context "nightly-benchmarks-results" --append < nightly_results.md } main "$@" \ No newline at end of file diff --git a/.buildkite/nightly-benchmarks/scripts/plot-nightly-results.py b/.buildkite/nightly-benchmarks/scripts/plot-nightly-results.py deleted file mode 100644 index e5cfcc64a9b2a..0000000000000 --- a/.buildkite/nightly-benchmarks/scripts/plot-nightly-results.py +++ /dev/null @@ -1,135 +0,0 @@ -import argparse -import json -import math -from pathlib import Path - -import matplotlib.pyplot as plt -import pandas as pd -from tabulate import tabulate - - -def parse_arguments(): - parser = argparse.ArgumentParser( - description= - 'Parse command line arguments for summary-nightly-results script.') - parser.add_argument('--results-folder', - type=str, - required=True, - help='The folder where the results are stored.') - parser.add_argument('--description', - type=str, - required=True, - help='Description of the results.') - - args = parser.parse_args() - return args - - -def main(args): - bar_colors = ['#56B4E9', '#009E73', '#D55E00', '#E69F00'] - results_folder = Path(args.results_folder) - - results = [] - - # collect results - for test_file in results_folder.glob("*_nightly_results.json"): - with open(test_file, "r") as f: - results = results + json.loads(f.read()) - - # generate markdown table - df = pd.DataFrame.from_dict(results) - - md_table = tabulate(df, headers='keys', tablefmt='pipe', showindex=False) - - with open(args.description, "r") as f: - description = f.read() - - description = description.format( - nightly_results_benchmarking_table=md_table) - - with open("nightly_results.md", "w") as f: - f.write(description) - - plt.rcParams.update({'font.size': 20}) - - # plot results - fig, axes = plt.subplots(3, 3, figsize=(16, 14)) - fig.subplots_adjust(hspace=1) - methods = ["vllm", "trt", "lmdeploy", "tgi"] - for i, model in enumerate(["llama8B", "llama70B", "mixtral8x7B"]): - for j, metric in enumerate(["TTFT", "ITL"]): - means, stds = [], [] - for method in methods: - target = df['Test name'].str.contains(model) - target = target & df['Engine'].str.contains(method) - filtered_df = df[target] - - if filtered_df.empty: - means.append(0.) - stds.append(0.) - else: - means.append(filtered_df[f"Mean {metric} (ms)"].values[0]) - std = filtered_df[f"Std {metric} (ms)"].values[0] - success = filtered_df["Successful req."].values[0] - stds.append(std / math.sqrt(success)) - - print(model, metric) - print(means, stds) - - ax = axes[i, j + 1] - - bars = ax.bar( - ["vllm", "trt", "lmdeploy", "tgi"], - means, - yerr=stds, - capsize=10, - ) - for idx, bar in enumerate(bars): - bar.set_color(bar_colors[idx]) - ax.set_ylim(bottom=0) - - ax.set_ylabel(f"{metric} (ms)") - ax.set_title(f"{model} {metric}") - ax.grid(axis='y') - - metric = "Tput" - j = 0 - if True: - tputs = [] - for method in methods: - target = df['Test name'].str.contains(model) - target = target & df['Engine'].str.contains(method) - filtered_df = df[target] - - if filtered_df.empty: - tputs.append(0.) - else: - input_tput = filtered_df["Input Tput (tok/s)"].values[0] - output_tput = filtered_df["Output Tput (tok/s)"].values[0] - tputs.append(input_tput + output_tput) - - print(model, metric) - print(tputs) - - ax = axes[i, j] - - bars = ax.bar( - ["vllm", "trt", "lmdeploy", "tgi"], - tputs, - ) - for idx, bar in enumerate(bars): - bar.set_color(bar_colors[idx]) - - ax.set_ylim(bottom=0) - - ax.set_ylabel("Tput (token/s)") - ax.set_title(f"{model} {metric}") - ax.grid(axis='y') - - fig.tight_layout() - fig.savefig("nightly_results.png", bbox_inches='tight', dpi=400) - - -if __name__ == '__main__': - args = parse_arguments() - main(args) diff --git a/.buildkite/nightly-benchmarks/scripts/run-lmdeploy-nightly.sh b/.buildkite/nightly-benchmarks/scripts/run-lmdeploy-nightly.sh deleted file mode 100644 index d6f112aaa42fd..0000000000000 --- a/.buildkite/nightly-benchmarks/scripts/run-lmdeploy-nightly.sh +++ /dev/null @@ -1,218 +0,0 @@ -#!/bin/bash - -set -o pipefail - -check_gpus() { - # check the number of GPUs and GPU type. - declare -g gpu_count=$(nvidia-smi --list-gpus | wc -l) - if [[ $gpu_count -gt 0 ]]; then - echo "GPU found." - else - echo "Need at least 1 GPU to run benchmarking." - exit 1 - fi - declare -g gpu_type=$(echo $(nvidia-smi --query-gpu=name --format=csv,noheader) | awk '{print $2}') - echo "GPU type is $gpu_type" -} - -kill_gpu_processes() { - pkill lmdeploy || true - # waiting for GPU processes to be fully killed - sleep 10 - # Print the GPU memory usage - # so that we know if all GPU processes are killed. - gpu_memory_usage=$(nvidia-smi --query-gpu=memory.used --format=csv,noheader,nounits -i 0) - # The memory usage should be 0 MB. - echo "GPU 0 Memory Usage: $gpu_memory_usage MB" -} - -json2args() { - # transforms the JSON string to command line args, and '_' is replaced to '-' - # example: - # input: { "model": "meta-llama/Llama-2-7b-chat-hf", "tensor_parallel_size": 1 } - # output: --model meta-llama/Llama-2-7b-chat-hf --tensor-parallel-size 1 - local json_string=$1 - local args=$( - echo "$json_string" | jq -r ' - to_entries | - map("--" + (.key | gsub("_"; "-")) + " " + (.value | tostring)) | - join(" ") - ' - ) - echo "$args" -} - -wait_for_server() { - # wait for vllm server to start - # return 1 if vllm server crashes - timeout 1200 bash -c ' - until curl -s localhost:8000/v1/completions > /dev/null; do - sleep 1 - done' && return 0 || return 1 -} - -run_serving_tests() { - # run serving tests using `benchmark_serving.py` - # $1: a json file specifying serving test cases - - local serving_test_file - serving_test_file=$1 - - # Iterate over serving tests - jq -c '.[]' "$serving_test_file" | while read -r params; do - # get the test name, and append the GPU type back to it. - test_name=$(echo "$params" | jq -r '.test_name') - - # if TEST_SELECTOR is set, only run the test cases that match the selector - if [[ -n "$TEST_SELECTOR" ]] && [[ ! "$test_name" =~ $TEST_SELECTOR ]]; then - echo "Skip test case $test_name." - continue - fi - - # append lmdeploy to the test name - test_name=lmdeploy_$test_name - - # get common parameters - common_params=$(echo "$params" | jq -r '.common_parameters') - model=$(echo "$common_params" | jq -r '.model') - tp=$(echo "$common_params" | jq -r '.tp') - dataset_name=$(echo "$common_params" | jq -r '.dataset_name') - dataset_path=$(echo "$common_params" | jq -r '.dataset_path') - port=$(echo "$common_params" | jq -r '.port') - num_prompts=$(echo "$common_params" | jq -r '.num_prompts') - - - - # get client and server arguments - server_params=$(echo "$params" | jq -r '.lmdeploy_server_parameters') - client_params=$(echo "$params" | jq -r '.lmdeploy_client_parameters') - server_args=$(json2args "$server_params") - client_args=$(json2args "$client_params") - qps_list=$(echo "$params" | jq -r '.qps_list') - qps_list=$(echo "$qps_list" | jq -r '.[] | @sh') - echo "Running over qps list $qps_list" - - # check if there is enough GPU to run the test - if [[ $gpu_count -lt $tp ]]; then - echo "Required tensor-parallel-size $tp but only $gpu_count GPU found. Skip testcase $test_name." - continue - fi - - # prepare tokenizer - rm -rf /tokenizer_cache - mkdir /tokenizer_cache - python ../.buildkite/nightly-benchmarks/scripts/download-tokenizer.py \ - --model "$model" \ - --cachedir /tokenizer_cache - - server_command="lmdeploy serve api_server $model \ - --tp $tp \ - --server-port $port \ - $server_args" - - # run the server - echo "Running test case $test_name" - echo "Server command: $server_command" - bash -c "$server_command" & - - # wait until the server is alive - wait_for_server - if [ $? -eq 0 ]; then - echo "" - echo "lmdeploy server is up and running." - else - echo "" - echo "lmdeploy failed to start within the timeout period." - break - fi - - # get model name - model_name=$(python ../.buildkite/nightly-benchmarks/scripts/get-lmdeploy-modelname.py) - - # iterate over different QPS - for qps in $qps_list; do - # remove the surrounding single quote from qps - if [[ "$qps" == *"inf"* ]]; then - echo "qps was $qps" - qps="inf" - echo "now qps is $qps" - fi - - new_test_name=$test_name"_qps_"$qps - - client_command="python3 benchmark_serving.py \ - --backend lmdeploy \ - --tokenizer /tokenizer_cache \ - --dataset-name $dataset_name \ - --dataset-path $dataset_path \ - --num-prompts $num_prompts \ - --port $port \ - --save-result \ - --result-dir $RESULTS_FOLDER \ - --result-filename ${new_test_name}.json \ - --request-rate $qps \ - --model \"$model_name\" \ - $client_args" - - echo "Running test case $test_name with qps $qps" - echo "Client command: $client_command" - - eval "$client_command" - - # record the benchmarking commands - jq_output=$(jq -n \ - --arg server "$server_command" \ - --arg client "$client_command" \ - --arg gpu "$gpu_type" \ - --arg engine "lmdeploy" \ - '{ - server_command: $server, - client_command: $client, - gpu_type: $gpu, - engine: $engine - }') - echo "$jq_output" >"$RESULTS_FOLDER/${new_test_name}.commands" - - done - - # clean up - kill_gpu_processes - rm -rf /root/.cache/huggingface/* - done -} - - -upload_to_buildkite() { - # upload the benchmarking results to buildkite - - # if the agent binary is not found, skip uploading the results, exit 0 - if [ ! -f /workspace/buildkite-agent ]; then - echo "buildkite-agent binary not found. Skip uploading the results." - return 0 - fi - # /workspace/buildkite-agent annotate --style "success" --context "benchmark-results" --append < $RESULTS_FOLDER/${CURRENT_LLM_SERVING_ENGINE}_nightly_results.md - /workspace/buildkite-agent artifact upload "$RESULTS_FOLDER/*" -} - - -main() { - - check_gpus - # enter vllm directory - cd $VLLM_SOURCE_CODE_LOC/benchmarks - - declare -g RESULTS_FOLDER=results/ - mkdir -p $RESULTS_FOLDER - BENCHMARK_ROOT=../.buildkite/nightly-benchmarks/ - - python -m pip install transformers==4.41.2 - - export CURRENT_LLM_SERVING_ENGINE=lmdeploy - run_serving_tests $BENCHMARK_ROOT/tests/nightly-tests.json - python -m pip install tabulate pandas - python $BENCHMARK_ROOT/scripts/summary-nightly-results.py - upload_to_buildkite - -} - -main "$@" diff --git a/.buildkite/nightly-benchmarks/scripts/run-nightly-benchmarks.sh b/.buildkite/nightly-benchmarks/scripts/run-nightly-benchmarks.sh new file mode 100644 index 0000000000000..dd8c15e0700eb --- /dev/null +++ b/.buildkite/nightly-benchmarks/scripts/run-nightly-benchmarks.sh @@ -0,0 +1,357 @@ +#!/bin/bash + +set -o pipefail +set -x + +check_gpus() { + # check the number of GPUs and GPU type. + declare -g gpu_count=$(nvidia-smi --list-gpus | wc -l) + if [[ $gpu_count -gt 0 ]]; then + echo "GPU found." + else + echo "Need at least 1 GPU to run benchmarking." + exit 1 + fi + declare -g gpu_type=$(echo $(nvidia-smi --query-gpu=name --format=csv,noheader) | awk '{print $2}') + echo "GPU type is $gpu_type" +} + +check_hf_token() { + # check if HF_TOKEN is available and valid + if [[ -z "$HF_TOKEN" ]]; then + echo "Error: HF_TOKEN is not set." + exit 1 + elif [[ ! "$HF_TOKEN" =~ ^hf_ ]]; then + echo "Error: HF_TOKEN does not start with 'hf_'." + exit 1 + else + echo "HF_TOKEN is set and valid." + fi +} + + +upload_to_buildkite() { + # upload the benchmarking results to buildkite + + # if the agent binary is not found, skip uploading the results, exit 0 + if [ ! -f /workspace/buildkite-agent ]; then + echo "buildkite-agent binary not found. Skip uploading the results." + return 0 + fi + # /workspace/buildkite-agent annotate --style "success" --context "benchmark-results" --append < $RESULTS_FOLDER/${CURRENT_LLM_SERVING_ENGINE}_nightly_results.md + /workspace/buildkite-agent artifact upload "$RESULTS_FOLDER/*" +} + + +get_current_llm_serving_engine() { + + if which lmdeploy >/dev/null; then + echo "Container: lmdeploy" + export CURRENT_LLM_SERVING_ENGINE=lmdeploy + return + fi + + if [ -e /tgi-entrypoint.sh ]; then + echo "Container: tgi" + export CURRENT_LLM_SERVING_ENGINE=tgi + return + fi + + if which trtllm-build >/dev/null; then + echo "Container: tensorrt-llm" + export CURRENT_LLM_SERVING_ENGINE=trt + return + fi + + if [ -e /sgl-workspace ]; then + echo "Container: sglang" + export CURRENT_LLM_SERVING_ENGINE=sglang + return + fi + + if [ -e /vllm-workspace ]; then + echo "Container: vllm" + # move to a completely irrelevant directory, to avoid import vllm from current folder + export CURRENT_LLM_SERVING_ENGINE=vllm + + return + fi +} + +json2args() { + # transforms the JSON string to command line args, and '_' is replaced to '-' + # example: + # input: { "model": "meta-llama/Llama-2-7b-chat-hf", "tensor_parallel_size": 1 } + # output: --model meta-llama/Llama-2-7b-chat-hf --tensor-parallel-size 1 + local json_string=$1 + local args=$( + echo "$json_string" | jq -r ' + to_entries | + map("--" + (.key | gsub("_"; "-")) + " " + (.value | tostring)) | + join(" ") + ' + ) + echo "$args" +} + +kill_gpu_processes() { + pkill -f python + pkill -f python3 + pkill -f tritonserver + pkill -f pt_main_thread + pkill -f text-generation + pkill -f lmdeploy + + while [ $(nvidia-smi --query-gpu=memory.used --format=csv,noheader,nounits | head -n 1) -ge 1000 ]; do + sleep 1 + done +} + +wait_for_server() { + # wait for vllm server to start + # return 1 if vllm server crashes + timeout 1200 bash -c ' + until curl -s localhost:8000/v1/completions > /dev/null; do + sleep 1 + done' && return 0 || return 1 +} + +ensure_installed() { + # Ensure that the given command is installed by apt-get + local cmd=$1 + if ! which $cmd >/dev/null; then + apt-get update && apt-get install -y $cmd + fi +} + +run_serving_tests() { + # run serving tests using `benchmark_serving.py` + # $1: a json file specifying serving test cases + + local serving_test_file + serving_test_file=$1 + + # Iterate over serving tests + jq -c '.[]' "$serving_test_file" | while read -r params; do + # get the test name, and append the GPU type back to it. + test_name=$(echo "$params" | jq -r '.test_name') + + # if TEST_SELECTOR is set, only run the test cases that match the selector + if [[ -n "$TEST_SELECTOR" ]] && [[ ! "$test_name" =~ $TEST_SELECTOR ]]; then + echo "Skip test case $test_name." + continue + fi + + # prepend the current serving engine to the test name + test_name=${CURRENT_LLM_SERVING_ENGINE}_${test_name} + + # get common parameters + common_params=$(echo "$params" | jq -r '.common_parameters') + model=$(echo "$common_params" | jq -r '.model') + tp=$(echo "$common_params" | jq -r '.tp') + dataset_name=$(echo "$common_params" | jq -r '.dataset_name') + dataset_path=$(echo "$common_params" | jq -r '.dataset_path') + port=$(echo "$common_params" | jq -r '.port') + num_prompts=$(echo "$common_params" | jq -r '.num_prompts') + reuse_server=$(echo "$common_params" | jq -r '.reuse_server') + + # get client and server arguments + server_params=$(echo "$params" | jq -r ".${CURRENT_LLM_SERVING_ENGINE}_server_parameters") + client_params=$(echo "$params" | jq -r ".${CURRENT_LLM_SERVING_ENGINE}_client_parameters") + client_args=$(json2args "$client_params") + qps_list=$(echo "$params" | jq -r '.qps_list') + qps_list=$(echo "$qps_list" | jq -r '.[] | @sh') + echo "Running over qps list $qps_list" + + # check if there is enough GPU to run the test + if [[ $gpu_count -lt $tp ]]; then + echo "Required num-shard $tp but only $gpu_count GPU found. Skip testcase $test_name." + continue + fi + + if [[ $reuse_server == "true" ]]; then + echo "Reuse previous server for test case $test_name" + else + kill_gpu_processes + bash $VLLM_SOURCE_CODE_LOC/.buildkite/nightly-benchmarks/scripts/launch-server.sh \ + "$server_params" "$common_params" + fi + + wait_for_server + + if [ $? -eq 0 ]; then + echo "" + echo "$CURRENT_LLM_SERVING_ENGINE server is up and running." + else + echo "" + echo "$CURRENT_LLM_SERVING_ENGINE failed to start within the timeout period." + break + fi + + # prepare tokenizer + # this is required for lmdeploy. + cd $VLLM_SOURCE_CODE_LOC/benchmarks + rm -rf /tokenizer_cache + mkdir /tokenizer_cache + python3 ../.buildkite/nightly-benchmarks/scripts/download-tokenizer.py \ + --model "$model" \ + --cachedir /tokenizer_cache + cd $VLLM_SOURCE_CODE_LOC/benchmarks + + + # change model name for lmdeploy (it will not follow standard hf name) + if [[ "$CURRENT_LLM_SERVING_ENGINE" == "lmdeploy" ]]; then + model=$(python ../.buildkite/nightly-benchmarks/scripts/get-lmdeploy-modelname.py) + fi + + # iterate over different QPS + for qps in $qps_list; do + # remove the surrounding single quote from qps + if [[ "$qps" == *"inf"* ]]; then + echo "qps was $qps" + qps="inf" + echo "now qps is $qps" + fi + + new_test_name=$test_name"_qps_"$qps + + backend=$CURRENT_LLM_SERVING_ENGINE + + if [[ $backend = "trt" ]]; then + backend="tensorrt-llm" + fi + + if [[ "$backend" == *"vllm"* ]]; then + backend="vllm" + fi + + if [[ "$dataset_name" = "sharegpt" ]]; then + + client_command="python3 benchmark_serving.py \ + --backend $backend \ + --tokenizer /tokenizer_cache \ + --model $model \ + --dataset-name $dataset_name \ + --dataset-path $dataset_path \ + --num-prompts $num_prompts \ + --port $port \ + --save-result \ + --result-dir $RESULTS_FOLDER \ + --result-filename ${new_test_name}.json \ + --request-rate $qps \ + --ignore-eos \ + $client_args" + + elif [[ "$dataset_name" = "sonnet" ]]; then + + sonnet_input_len=$(echo "$common_params" | jq -r '.sonnet_input_len') + sonnet_output_len=$(echo "$common_params" | jq -r '.sonnet_output_len') + sonnet_prefix_len=$(echo "$common_params" | jq -r '.sonnet_prefix_len') + + client_command="python3 benchmark_serving.py \ + --backend $backend \ + --tokenizer /tokenizer_cache \ + --model $model \ + --dataset-name $dataset_name \ + --dataset-path $dataset_path \ + --num-prompts $num_prompts \ + --sonnet-input-len $sonnet_input_len \ + --sonnet-output-len $sonnet_output_len \ + --sonnet-prefix-len $sonnet_prefix_len \ + --port $port \ + --save-result \ + --result-dir $RESULTS_FOLDER \ + --result-filename ${new_test_name}.json \ + --request-rate $qps \ + --ignore-eos \ + $client_args" + + else + + echo "The dataset name must be either 'sharegpt' or 'sonnet'. Got $dataset_name." + exit 1 + + fi + + + + echo "Running test case $test_name with qps $qps" + echo "Client command: $client_command" + + eval "$client_command" + + server_command="None" + + # record the benchmarking commands + jq_output=$(jq -n \ + --arg server "$server_command" \ + --arg client "$client_command" \ + --arg gpu "$gpu_type" \ + --arg engine "$CURRENT_LLM_SERVING_ENGINE" \ + '{ + server_command: $server, + client_command: $client, + gpu_type: $gpu, + engine: $engine + }') + echo "$jq_output" >"$RESULTS_FOLDER/${new_test_name}.commands" + + done + + done + + kill_gpu_processes +} + + +prepare_dataset() { + + # download sharegpt dataset + cd $VLLM_SOURCE_CODE_LOC/benchmarks + wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json + + # duplicate sonnet by 4x, to allow benchmarking with input length 2048 + cd $VLLM_SOURCE_CODE_LOC/benchmarks + echo "" > sonnet_4x.txt + for _ in {1..4} + do + cat sonnet.txt >> sonnet_4x.txt + done + +} + +main() { + + # check if the environment variable is successfully injected from yaml + + check_gpus + check_hf_token + get_current_llm_serving_engine + + pip install -U transformers + + # check storage + df -h + + ensure_installed wget + ensure_installed curl + ensure_installed jq + + prepare_dataset + + cd $VLLM_SOURCE_CODE_LOC/benchmarks + declare -g RESULTS_FOLDER=results/ + mkdir -p $RESULTS_FOLDER + BENCHMARK_ROOT=$VLLM_SOURCE_CODE_LOC/.buildkite/nightly-benchmarks/ + + # run the test + run_serving_tests $BENCHMARK_ROOT/tests/nightly-tests.json + + # upload benchmark results to buildkite + python3 -m pip install tabulate pandas + python3 $BENCHMARK_ROOT/scripts/summary-nightly-results.py + upload_to_buildkite + +} + +main "$@" diff --git a/.buildkite/nightly-benchmarks/scripts/run-tgi-nightly.sh b/.buildkite/nightly-benchmarks/scripts/run-tgi-nightly.sh deleted file mode 100644 index fed03654f8b77..0000000000000 --- a/.buildkite/nightly-benchmarks/scripts/run-tgi-nightly.sh +++ /dev/null @@ -1,216 +0,0 @@ -#!/bin/bash - -set -o pipefail - -check_gpus() { - # check the number of GPUs and GPU type. - declare -g gpu_count=$(nvidia-smi --list-gpus | wc -l) - if [[ $gpu_count -gt 0 ]]; then - echo "GPU found." - else - echo "Need at least 1 GPU to run benchmarking." - exit 1 - fi - declare -g gpu_type=$(echo $(nvidia-smi --query-gpu=name --format=csv,noheader) | awk '{print $2}') - echo "GPU type is $gpu_type" -} - -kill_gpu_processes() { - pkill text-generation || true - # waiting for GPU processes to be fully killed - sleep 10 - # Print the GPU memory usage - # so that we know if all GPU processes are killed. - gpu_memory_usage=$(nvidia-smi --query-gpu=memory.used --format=csv,noheader,nounits -i 0) - # The memory usage should be 0 MB. - echo "GPU 0 Memory Usage: $gpu_memory_usage MB" -} - -json2args() { - # transforms the JSON string to command line args, and '_' is replaced to '-' - # example: - # input: { "model": "meta-llama/Llama-2-7b-chat-hf", "tensor_parallel_size": 1 } - # output: --model meta-llama/Llama-2-7b-chat-hf --tensor-parallel-size 1 - local json_string=$1 - local args=$( - echo "$json_string" | jq -r ' - to_entries | - map("--" + (.key | gsub("_"; "-")) + " " + (.value | tostring)) | - join(" ") - ' - ) - echo "$args" -} - -wait_for_server() { - timeout 1200 bash -c ' - until curl -s localhost:8000/generate_stream > /dev/null; do - sleep 1 - done' && return 0 || return 1 -} - -run_serving_tests() { - # run serving tests using `benchmark_serving.py` - # $1: a json file specifying serving test cases - - local serving_test_file - serving_test_file=$1 - - # Iterate over serving tests - jq -c '.[]' "$serving_test_file" | while read -r params; do - # get the test name, and append the GPU type back to it. - test_name=$(echo "$params" | jq -r '.test_name') - - - # if TEST_SELECTOR is set, only run the test cases that match the selector - if [[ -n "$TEST_SELECTOR" ]] && [[ ! "$test_name" =~ $TEST_SELECTOR ]]; then - echo "Skip test case $test_name." - continue - fi - - # append tgi to the test name - test_name=tgi_$test_name - - # get common parameters - common_params=$(echo "$params" | jq -r '.common_parameters') - model=$(echo "$common_params" | jq -r '.model') - tp=$(echo "$common_params" | jq -r '.tp') - dataset_name=$(echo "$common_params" | jq -r '.dataset_name') - dataset_path=$(echo "$common_params" | jq -r '.dataset_path') - port=$(echo "$common_params" | jq -r '.port') - num_prompts=$(echo "$common_params" | jq -r '.num_prompts') - - # get client and server arguments - server_params=$(echo "$params" | jq -r '.tgi_server_parameters') - client_params=$(echo "$params" | jq -r '.tgi_client_parameters') - server_args=$(json2args "$server_params") - client_args=$(json2args "$client_params") - qps_list=$(echo "$params" | jq -r '.qps_list') - qps_list=$(echo "$qps_list" | jq -r '.[] | @sh') - echo "Running over qps list $qps_list" - - # check if there is enough GPU to run the test - if [[ $gpu_count -lt $tp ]]; then - echo "Required num-shard $tp but only $gpu_count GPU found. Skip testcase $test_name." - continue - fi - - if echo "$common_params" | jq -e 'has("fp8")' > /dev/null; then - echo "Key 'fp8' exists in common params." - server_command="/tgi-entrypoint.sh \ - --model-id $model \ - --num-shard $tp \ - --port $port \ - --quantize fp8 \ - $server_args" - else - echo "Key 'fp8' does not exist in common params." - server_command="/tgi-entrypoint.sh \ - --model-id $model \ - --num-shard $tp \ - --port $port \ - $server_args" - fi - - - - - # run the server - echo "Running test case $test_name" - echo "Server command: $server_command" - eval "$server_command" & - - # wait until the server is alive - wait_for_server - if [ $? -eq 0 ]; then - echo "" - echo "tgi server is up and running." - else - echo "" - echo "tgi failed to start within the timeout period." - break - fi - - # iterate over different QPS - for qps in $qps_list; do - # remove the surrounding single quote from qps - if [[ "$qps" == *"inf"* ]]; then - echo "qps was $qps" - qps="inf" - echo "now qps is $qps" - fi - - new_test_name=$test_name"_qps_"$qps - - client_command="python3 benchmark_serving.py \ - --backend tgi \ - --model $model \ - --dataset-name $dataset_name \ - --dataset-path $dataset_path \ - --num-prompts $num_prompts \ - --port $port \ - --save-result \ - --result-dir $RESULTS_FOLDER \ - --result-filename ${new_test_name}.json \ - --request-rate $qps \ - $client_args" - - echo "Running test case $test_name with qps $qps" - echo "Client command: $client_command" - - eval "$client_command" - - # record the benchmarking commands - jq_output=$(jq -n \ - --arg server "$server_command" \ - --arg client "$client_command" \ - --arg gpu "$gpu_type" \ - --arg engine "tgi" \ - '{ - server_command: $server, - client_command: $client, - gpu_type: $gpu, - engine: $engine - }') - echo "$jq_output" >"$RESULTS_FOLDER/${new_test_name}.commands" - - done - - # clean up - kill_gpu_processes - rm -rf /root/.cache/huggingface/* - done -} - - - -upload_to_buildkite() { - # upload the benchmarking results to buildkite - - # if the agent binary is not found, skip uploading the results, exit 0 - if [ ! -f /workspace/buildkite-agent ]; then - echo "buildkite-agent binary not found. Skip uploading the results." - return 0 - fi - # /workspace/buildkite-agent annotate --style "success" --context "benchmark-results" --append < $RESULTS_FOLDER/${CURRENT_LLM_SERVING_ENGINE}_nightly_results.md - /workspace/buildkite-agent artifact upload "$RESULTS_FOLDER/*" -} - -main() { - - check_gpus - # enter vllm directory - cd $VLLM_SOURCE_CODE_LOC/benchmarks - declare -g RESULTS_FOLDER=results/ - mkdir -p $RESULTS_FOLDER - BENCHMARK_ROOT=../.buildkite/nightly-benchmarks/ - - export CURRENT_LLM_SERVING_ENGINE=tgi - run_serving_tests $BENCHMARK_ROOT/tests/nightly-tests.json - python -m pip install tabulate pandas - python $BENCHMARK_ROOT/scripts/summary-nightly-results.py - upload_to_buildkite - -} - -main "$@" diff --git a/.buildkite/nightly-benchmarks/scripts/run-trt-nightly.sh b/.buildkite/nightly-benchmarks/scripts/run-trt-nightly.sh deleted file mode 100644 index 4a82b9ec64d71..0000000000000 --- a/.buildkite/nightly-benchmarks/scripts/run-trt-nightly.sh +++ /dev/null @@ -1,214 +0,0 @@ -#!/bin/bash - -set -o pipefail - -check_gpus() { - # check the number of GPUs and GPU type. - declare -g gpu_count=$(nvidia-smi --list-gpus | wc -l) - if [[ $gpu_count -gt 0 ]]; then - echo "GPU found." - else - echo "Need at least 1 GPU to run benchmarking." - exit 1 - fi - declare -g gpu_type=$(echo $(nvidia-smi --query-gpu=name --format=csv,noheader) | awk '{print $2}') - echo "GPU type is $gpu_type" -} - -kill_gpu_processes() { - pkill tritonserver || true - # waiting for GPU processes to be fully killed - sleep 20 - # Print the GPU memory usage - # so that we know if all GPU processes are killed. - gpu_memory_usage=$(nvidia-smi --query-gpu=memory.used --format=csv,noheader,nounits -i 0) - # The memory usage should be 0 MB. - echo "GPU 0 Memory Usage: $gpu_memory_usage MB" -} - -json2args() { - # transforms the JSON string to command line args, and '_' is replaced to '-' - # example: - # input: { "model": "meta-llama/Llama-2-7b-chat-hf", "tensor_parallel_size": 1 } - # output: --model meta-llama/Llama-2-7b-chat-hf --tensor-parallel-size 1 - local json_string=$1 - local args=$( - echo "$json_string" | jq -r ' - to_entries | - map("--" + (.key | gsub("_"; "-")) + " " + (.value | tostring)) | - join(" ") - ' - ) - echo "$args" -} - -wait_for_server() { - timeout 1200 bash -c ' - until curl -s localhost:8000/generate_stream > /dev/null; do - sleep 1 - done' && return 0 || return 1 -} - -run_serving_tests() { - # run serving tests using `benchmark_serving.py` - # $1: a json file specifying serving test cases - - local serving_test_file - serving_test_file=$1 - - # Iterate over serving tests - jq -c '.[]' "$serving_test_file" | while read -r params; do - # get the test name, and append the GPU type back to it. - test_name=$(echo "$params" | jq -r '.test_name') - - # if TEST_SELECTOR is set, only run the test cases that match the selector - if [[ -n "$TEST_SELECTOR" ]] && [[ ! "$test_name" =~ $TEST_SELECTOR ]]; then - echo "Skip test case $test_name." - continue - fi - - # append trt to the test name - test_name=trt_$test_name - - # get common parameters - common_params=$(echo "$params" | jq -r '.common_parameters') - model=$(echo "$common_params" | jq -r '.model') - tp=$(echo "$common_params" | jq -r '.tp') - dataset_name=$(echo "$common_params" | jq -r '.dataset_name') - dataset_path=$(echo "$common_params" | jq -r '.dataset_path') - port=$(echo "$common_params" | jq -r '.port') - num_prompts=$(echo "$common_params" | jq -r '.num_prompts') - - # get client and server arguments - server_params=$(echo "$params" | jq -r '.trt_server_parameters') - client_params=$(echo "$params" | jq -r '.trt_client_parameters') - client_args=$(json2args "$client_params") - qps_list=$(echo "$params" | jq -r '.qps_list') - qps_list=$(echo "$qps_list" | jq -r '.[] | @sh') - echo "Running over qps list $qps_list" - - # check if there is enough GPU to run the test - if [[ $gpu_count -lt $tp ]]; then - echo "Required model_tp_size $tp but only $gpu_count GPU found. Skip testcase $test_name." - continue - fi - - - - cd $VLLM_SOURCE_CODE_LOC/benchmarks - - - echo "Running test case $test_name" - bash ../.buildkite/nightly-benchmarks/scripts/launch-trt-server.sh "$server_params" "$common_params" - - # wait until the server is alive - wait_for_server - if [ $? -eq 0 ]; then - echo "" - echo "trt server is up and running." - else - echo "" - echo "trt failed to start within the timeout period." - break - fi - - # prepare tokenizer - cd $VLLM_SOURCE_CODE_LOC/benchmarks - rm -rf /tokenizer_cache - mkdir /tokenizer_cache - python ../.buildkite/nightly-benchmarks/scripts/download-tokenizer.py \ - --model "$model" \ - --cachedir /tokenizer_cache - cd $VLLM_SOURCE_CODE_LOC/benchmarks - - - # iterate over different QPS - for qps in $qps_list; do - # remove the surrounding single quote from qps - if [[ "$qps" == *"inf"* ]]; then - echo "qps was $qps" - qps="inf" - echo "now qps is $qps" - fi - - new_test_name=$test_name"_qps_"$qps - - client_command="python3 benchmark_serving.py \ - --backend tensorrt-llm \ - --tokenizer /tokenizer_cache \ - --model $model \ - --dataset-name $dataset_name \ - --dataset-path $dataset_path \ - --num-prompts $num_prompts \ - --port $port \ - --save-result \ - --result-dir $RESULTS_FOLDER \ - --result-filename ${new_test_name}.json \ - --request-rate $qps \ - $client_args" - - echo "Running test case $test_name with qps $qps" - echo "Client command: $client_command" - - eval "$client_command" - - server_command="" - # record the benchmarking commands - jq_output=$(jq -n \ - --arg server "$server_command" \ - --arg client "$client_command" \ - --arg gpu "$gpu_type" \ - --arg engine "trt" \ - '{ - server_command: $server, - client_command: $client, - gpu_type: $gpu, - engine: $engine - }') - echo "$jq_output" >"$RESULTS_FOLDER/${new_test_name}.commands" - - done - - # clean up - kill_gpu_processes - rm -rf /root/.cache/huggingface/* - done -} - -upload_to_buildkite() { - # upload the benchmarking results to buildkite - - # if the agent binary is not found, skip uploading the results, exit 0 - if [ ! -f /workspace/buildkite-agent ]; then - echo "buildkite-agent binary not found. Skip uploading the results." - return 0 - fi - # /workspace/buildkite-agent annotate --style "success" --context "benchmark-results" --append < $RESULTS_FOLDER/${CURRENT_LLM_SERVING_ENGINE}_nightly_results.md - /workspace/buildkite-agent artifact upload "$RESULTS_FOLDER/*" -} - - -main() { - - check_gpus - - - # enter vllm directory - cd $VLLM_SOURCE_CODE_LOC/benchmarks - - declare -g RESULTS_FOLDER=results/ - mkdir -p $RESULTS_FOLDER - BENCHMARK_ROOT=../.buildkite/nightly-benchmarks/ - - # update transformers package, to make sure mixtral tokenizer is available - python -m pip install transformers -U - - export CURRENT_LLM_SERVING_ENGINE=trt - run_serving_tests $BENCHMARK_ROOT/tests/nightly-tests.json - python -m pip install tabulate pandas - python $BENCHMARK_ROOT/scripts/summary-nightly-results.py - upload_to_buildkite - -} - -main "$@" diff --git a/.buildkite/nightly-benchmarks/scripts/run-vllm-nightly.sh b/.buildkite/nightly-benchmarks/scripts/run-vllm-nightly.sh deleted file mode 100644 index 663045b8a9122..0000000000000 --- a/.buildkite/nightly-benchmarks/scripts/run-vllm-nightly.sh +++ /dev/null @@ -1,221 +0,0 @@ -#!/bin/bash - -set -o pipefail - -check_gpus() { - # check the number of GPUs and GPU type. - declare -g gpu_count=$(nvidia-smi --list-gpus | wc -l) - if [[ $gpu_count -gt 0 ]]; then - echo "GPU found." - else - echo "Need at least 1 GPU to run benchmarking." - exit 1 - fi - declare -g gpu_type=$(echo $(nvidia-smi --query-gpu=name --format=csv,noheader) | awk '{print $2}') - echo "GPU type is $gpu_type" -} - -kill_gpu_processes() { - # kill all processes on GPU. - pkill pt_main_thread - sleep 10 - - # remove vllm config file - rm -rf ~/.config/vllm - - # Print the GPU memory usage - # so that we know if all GPU processes are killed. - gpu_memory_usage=$(nvidia-smi --query-gpu=memory.used --format=csv,noheader,nounits -i 0) - # The memory usage should be 0 MB. - echo "GPU 0 Memory Usage: $gpu_memory_usage MB" -} - -json2args() { - # transforms the JSON string to command line args, and '_' is replaced to '-' - # example: - # input: { "model": "meta-llama/Llama-2-7b-chat-hf", "tensor_parallel_size": 1 } - # output: --model meta-llama/Llama-2-7b-chat-hf --tensor-parallel-size 1 - local json_string=$1 - local args=$( - echo "$json_string" | jq -r ' - to_entries | - map("--" + (.key | gsub("_"; "-")) + " " + (.value | tostring)) | - join(" ") - ' - ) - echo "$args" -} - -wait_for_server() { - # wait for vllm server to start - # return 1 if vllm server crashes - timeout 1200 bash -c ' - until curl -s localhost:8000/v1/completions > /dev/null; do - sleep 1 - done' && return 0 || return 1 -} - -run_serving_tests() { - # run serving tests using `benchmark_serving.py` - # $1: a json file specifying serving test cases - - local serving_test_file - serving_test_file=$1 - - # Iterate over serving tests - jq -c '.[]' "$serving_test_file" | while read -r params; do - # get the test name, and append the GPU type back to it. - test_name=$(echo "$params" | jq -r '.test_name') - - # if TEST_SELECTOR is set, only run the test cases that match the selector - if [[ -n "$TEST_SELECTOR" ]] && [[ ! "$test_name" =~ $TEST_SELECTOR ]]; then - echo "Skip test case $test_name." - continue - fi - - # append vllm to the test name - test_name=vllm_$test_name - - - # get common parameters - common_params=$(echo "$params" | jq -r '.common_parameters') - model=$(echo "$common_params" | jq -r '.model') - tp=$(echo "$common_params" | jq -r '.tp') - dataset_name=$(echo "$common_params" | jq -r '.dataset_name') - dataset_path=$(echo "$common_params" | jq -r '.dataset_path') - port=$(echo "$common_params" | jq -r '.port') - num_prompts=$(echo "$common_params" | jq -r '.num_prompts') - - # get client and server arguments - server_params=$(echo "$params" | jq -r '.vllm_server_parameters') - client_params=$(echo "$params" | jq -r '.vllm_client_parameters') - server_args=$(json2args "$server_params") - client_args=$(json2args "$client_params") - qps_list=$(echo "$params" | jq -r '.qps_list') - qps_list=$(echo "$qps_list" | jq -r '.[] | @sh') - echo "Running over qps list $qps_list" - - # check if there is enough GPU to run the test - if [[ $gpu_count -lt $tp ]]; then - echo "Required tensor-parallel-size $tp but only $gpu_count GPU found. Skip testcase $test_name." - continue - fi - - if echo "$common_params" | jq -e 'has("fp8")' > /dev/null; then - echo "Key 'fp8' exists in common params. Use neuralmagic fp8 model for convenience." - model=$(echo "$common_params" | jq -r '.neuralmagic_quantized_model') - server_command="python3 \ - -m vllm.entrypoints.openai.api_server \ - -tp $tp \ - --model $model \ - --port $port \ - $server_args" - else - echo "Key 'fp8' does not exist in common params." - server_command="python3 \ - -m vllm.entrypoints.openai.api_server \ - -tp $tp \ - --model $model \ - --port $port \ - $server_args" - fi - - # run the server - echo "Running test case $test_name" - echo "Server command: $server_command" - eval "$server_command" & - - # wait until the server is alive - wait_for_server - if [ $? -eq 0 ]; then - echo "" - echo "vllm server is up and running." - else - echo "" - echo "vllm failed to start within the timeout period." - break - fi - - # iterate over different QPS - for qps in $qps_list; do - # remove the surrounding single quote from qps - if [[ "$qps" == *"inf"* ]]; then - echo "qps was $qps" - qps="inf" - echo "now qps is $qps" - fi - - new_test_name=$test_name"_qps_"$qps - - client_command="python3 benchmark_serving.py \ - --backend vllm \ - --model $model \ - --dataset-name $dataset_name \ - --dataset-path $dataset_path \ - --num-prompts $num_prompts \ - --port $port \ - --save-result \ - --result-dir $RESULTS_FOLDER \ - --result-filename ${new_test_name}.json \ - --request-rate $qps \ - $client_args" - - echo "Running test case $test_name with qps $qps" - echo "Client command: $client_command" - - eval "$client_command" - - # record the benchmarking commands - jq_output=$(jq -n \ - --arg server "$server_command" \ - --arg client "$client_command" \ - --arg gpu "$gpu_type" \ - --arg engine "vllm" \ - '{ - server_command: $server, - client_command: $client, - gpu_type: $gpu, - engine: $engine - }') - echo "$jq_output" >"$RESULTS_FOLDER/${new_test_name}.commands" - - done - - # clean up - kill_gpu_processes - rm -rf /root/.cache/huggingface/* - done -} - - -upload_to_buildkite() { - # upload the benchmarking results to buildkite - - # if the agent binary is not found, skip uploading the results, exit 0 - if [ ! -f /workspace/buildkite-agent ]; then - echo "buildkite-agent binary not found. Skip uploading the results." - return 0 - fi - # /workspace/buildkite-agent annotate --style "success" --context "benchmark-results" --append < $RESULTS_FOLDER/${CURRENT_LLM_SERVING_ENGINE}_nightly_results.md - /workspace/buildkite-agent artifact upload "$RESULTS_FOLDER/*" -} - -main() { - - check_gpus - # enter vllm directory - cd $VLLM_SOURCE_CODE_LOC/benchmarks - declare -g RESULTS_FOLDER=results/ - mkdir -p $RESULTS_FOLDER - BENCHMARK_ROOT=../.buildkite/nightly-benchmarks/ - - export CURRENT_LLM_SERVING_ENGINE=vllm - run_serving_tests $BENCHMARK_ROOT/tests/nightly-tests.json - - python3 -m pip install tabulate pandas - python3 $BENCHMARK_ROOT/scripts/summary-nightly-results.py - upload_to_buildkite - -} - -main "$@" diff --git a/.buildkite/nightly-benchmarks/scripts/summary-nightly-results.py b/.buildkite/nightly-benchmarks/scripts/summary-nightly-results.py index 782d1ef9aab98..4e4d4cd4ca3c6 100644 --- a/.buildkite/nightly-benchmarks/scripts/summary-nightly-results.py +++ b/.buildkite/nightly-benchmarks/scripts/summary-nightly-results.py @@ -17,10 +17,17 @@ "request_throughput": "Tput (req/s)", "mean_ttft_ms": "Mean TTFT (ms)", "std_ttft_ms": "Std TTFT (ms)", + "median_ttft_ms": "Median TTFT (ms)", "mean_itl_ms": "Mean ITL (ms)", "std_itl_ms": "Std ITL (ms)", - "input_throughput": "Input Tput (tok/s)", + "median_itl_ms": "Median ITL (ms)", + "mean_tpot_ms": "Mean TPOT (ms)", + "std_tpot_ms": "Std TPOT (ms)", + "median_tpot_ms": "Median TPOT (ms)", + "total_token_throughput": "Total Token Tput (tok/s)", "output_throughput": "Output Tput (tok/s)", + "total_input_tokens": "Total input tokens", + "total_output_tokens": "Total output tokens", "engine": "Engine", } diff --git a/.buildkite/nightly-benchmarks/tests/nightly-tests.json b/.buildkite/nightly-benchmarks/tests/nightly-tests.json index f250833c62710..fda1a7a3ec53c 100644 --- a/.buildkite/nightly-benchmarks/tests/nightly-tests.json +++ b/.buildkite/nightly-benchmarks/tests/nightly-tests.json @@ -1,16 +1,18 @@ [ { - "test_name": "llama8B_tp1", - "qps_list": [4], + "test_name": "llama8B_tp1_sharegpt", + "qps_list": [4,8,16,32,"inf"], "common_parameters": { - "model": "meta-llama/Meta-Llama-3-8B", + "model": "meta-llama/Meta-Llama-3-8B-Instruct", "tp": 1, "dataset_name": "sharegpt", "dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json", "num_prompts": 500, - "port": 8000 + "port": 8000, + "reuse_server": false }, "lmdeploy_server_parameters": { + "dtype": "bfloat16" }, "lmdeploy_client_parameters": { }, @@ -21,34 +23,158 @@ }, "trt_server_parameters": { "model_type": "llama", - "model_dtype": "float16", - "max_batch_size": 256, + "model_dtype": "bfloat16", + "max_batch_size": 2048, "max_input_len": 4096, - "max_output_len": 4096, - "trt_llm_version": "r24.04" + "max_seq_len": 6144, + "max_num_tokens": 16384, + "trt_llm_version": "v0.11.0" }, "trt_client_parameters": { "endpoint": "/v2/models/ensemble/generate_stream" + }, + "vllm_server_parameters": { + "disable_log_stats": "", + "disable_log_requests": "", + "gpu_memory_utilization": 0.9, + "num_scheduler_steps": 10, + "max_num_seqs": 512, + "dtype": "bfloat16" + }, + "vllm_client_parameters": { + }, + "sglang_server_parameters": { + "disable_radix_cache": "", + "enable_torch_compile": "", + "dtype": "bfloat16" + }, + "sglang_client_parameters": { + } + }, + { + "test_name": "llama8B_tp1_sonnet_512_16", + "qps_list": [4,8,16,32,"inf"], + "common_parameters": { + "model": "meta-llama/Meta-Llama-3-8B-Instruct", + "tp": 1, + "dataset_name": "sonnet", + "dataset_path": "./sonnet_4x.txt", + "num_prompts": 500, + "port": 8000, + "sonnet_input_len": 512, + "sonnet_output_len": 16, + "sonnet_prefix_len": 50, + "reuse_server": true + }, + "lmdeploy_server_parameters": { + "dtype": "bfloat16" + }, + "lmdeploy_client_parameters": { + }, + "tgi_server_parameters": { + }, + "tgi_client_parameters": { + "endpoint": "/generate_stream" + }, + "trt_server_parameters": { + "model_type": "llama", + "model_dtype": "bfloat16", + "max_batch_size": 2048, + "max_input_len": 4096, + "max_seq_len": 6144, + "max_num_tokens": 16384, + "trt_llm_version": "v0.11.0" + }, + "trt_client_parameters": { + "endpoint": "/v2/models/ensemble/generate_stream" + }, + "vllm_server_parameters": { + "disable_log_stats": "", + "disable_log_requests": "", + "gpu_memory_utilization": 0.9, + "num_scheduler_steps": 10, + "max_num_seqs": 512, + "dtype": "bfloat16" + }, + "vllm_client_parameters": { + }, + "sglang_server_parameters": { + "disable_radix_cache": "", + "enable_torch_compile": "", + "dtype": "bfloat16" + }, + "sglang_client_parameters": { + } + }, + { + "test_name": "llama8B_tp1_sonnet_512_256", + "qps_list": [4,8,16,32,"inf"], + "common_parameters": { + "model": "meta-llama/Meta-Llama-3-8B-Instruct", + "tp": 1, + "dataset_name": "sonnet", + "dataset_path": "./sonnet_4x.txt", + "num_prompts": 500, + "port": 8000, + "sonnet_input_len": 512, + "sonnet_output_len": 256, + "sonnet_prefix_len": 50, + "reuse_server": true + }, + "lmdeploy_server_parameters": { + "dtype": "bfloat16" + }, + "lmdeploy_client_parameters": { + }, + "tgi_server_parameters": { + }, + "tgi_client_parameters": { + "endpoint": "/generate_stream" + }, + "trt_server_parameters": { + "model_type": "llama", + "model_dtype": "bfloat16", + "max_batch_size": 2048, + "max_input_len": 4096, + "max_seq_len": 6144, + "max_num_tokens": 16384, + "trt_llm_version": "v0.11.0" }, + "trt_client_parameters": { + "endpoint": "/v2/models/ensemble/generate_stream" + }, "vllm_server_parameters": { "disable_log_stats": "", - "disable_log_requests": "" + "disable_log_requests": "", + "gpu_memory_utilization": 0.9, + "num_scheduler_steps": 10, + "max_num_seqs": 512, + "dtype": "bfloat16" }, "vllm_client_parameters": { + }, + "sglang_server_parameters": { + "disable_radix_cache": "", + "enable_torch_compile": "", + "dtype": "bfloat16" + }, + "sglang_client_parameters": { } }, { - "test_name": "llama70B_tp4", - "qps_list": [2], + "test_name": "llama70B_tp4_sharegpt", + "qps_list": [4,8,16,32,"inf"], "common_parameters": { "model": "meta-llama/Meta-Llama-3-70B-Instruct", "tp": 4, "dataset_name": "sharegpt", "dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json", "num_prompts": 500, - "port": 8000 + "port": 8000, + "reuse_server": false }, "lmdeploy_server_parameters": { + "dtype": "bfloat16" }, "lmdeploy_client_parameters": { }, @@ -59,34 +185,50 @@ }, "trt_server_parameters": { "model_type": "llama", - "model_dtype": "float16", - "max_batch_size": 256, + "model_dtype": "bfloat16", + "max_batch_size": 2048, "max_input_len": 4096, - "max_output_len": 4096, - "trt_llm_version": "r24.04" + "max_seq_len": 6144, + "max_num_tokens": 16384, + "trt_llm_version": "v0.11.0" }, "trt_client_parameters": { "endpoint": "/v2/models/ensemble/generate_stream" - }, + }, "vllm_server_parameters": { "disable_log_stats": "", - "disable_log_requests": "" + "disable_log_requests": "", + "gpu_memory_utilization": 0.9, + "num_scheduler_steps": 10, + "max_num_seqs": 512, + "dtype": "bfloat16" }, "vllm_client_parameters": { + }, + "sglang_server_parameters": { + "disable_radix_cache": "", + "dtype": "bfloat16" + }, + "sglang_client_parameters": { } }, { - "test_name": "mixtral8x7B_tp2", - "qps_list": [2], + "test_name": "llama70B_tp4_sonnet_512_16", + "qps_list": [4,8,16,32,"inf"], "common_parameters": { - "model": "mistralai/Mixtral-8x7B-Instruct-v0.1", - "tp": 2, - "dataset_name": "sharegpt", - "dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json", + "model": "meta-llama/Meta-Llama-3-70B-Instruct", + "tp": 4, + "dataset_name": "sonnet", + "dataset_path": "./sonnet_4x.txt", "num_prompts": 500, - "port": 8000 + "port": 8000, + "sonnet_input_len": 512, + "sonnet_output_len": 16, + "sonnet_prefix_len": 50, + "reuse_server": true }, "lmdeploy_server_parameters": { + "dtype": "bfloat16" }, "lmdeploy_client_parameters": { }, @@ -97,20 +239,85 @@ }, "trt_server_parameters": { "model_type": "llama", - "model_dtype": "float16", - "max_batch_size": 256, + "model_dtype": "bfloat16", + "max_batch_size": 2048, "max_input_len": 4096, - "max_output_len": 4096, - "trt_llm_version": "r24.04" + "max_seq_len": 6144, + "max_num_tokens": 16384, + "trt_llm_version": "v0.11.0" }, "trt_client_parameters": { "endpoint": "/v2/models/ensemble/generate_stream" + }, + "vllm_server_parameters": { + "disable_log_stats": "", + "disable_log_requests": "", + "gpu_memory_utilization": 0.9, + "num_scheduler_steps": 10, + "max_num_seqs": 512, + "dtype": "bfloat16" + }, + "vllm_client_parameters": { }, + "sglang_server_parameters": { + "disable_radix_cache": "", + "dtype": "bfloat16" + }, + "sglang_client_parameters": { + } + }, + { + "test_name": "llama70B_tp4_sonnet_512_256", + "qps_list": [4,8,16,32,"inf"], + "common_parameters": { + "model": "meta-llama/Meta-Llama-3-70B-Instruct", + "tp": 4, + "dataset_name": "sonnet", + "dataset_path": "./sonnet_4x.txt", + "num_prompts": 500, + "port": 8000, + "sonnet_input_len": 512, + "sonnet_output_len": 256, + "sonnet_prefix_len": 50, + "reuse_server": true + }, + "lmdeploy_server_parameters": { + "dtype": "bfloat16" + }, + "lmdeploy_client_parameters": { + }, + "tgi_server_parameters": { + }, + "tgi_client_parameters": { + "endpoint": "/generate_stream" + }, + "trt_server_parameters": { + "model_type": "llama", + "model_dtype": "bfloat16", + "max_batch_size": 2048, + "max_input_len": 4096, + "max_seq_len": 6144, + "max_num_tokens": 16384, + "trt_llm_version": "v0.11.0" + }, + "trt_client_parameters": { + "endpoint": "/v2/models/ensemble/generate_stream" + }, "vllm_server_parameters": { "disable_log_stats": "", - "disable_log_requests": "" + "disable_log_requests": "", + "gpu_memory_utilization": 0.9, + "num_scheduler_steps": 10, + "max_num_seqs": 512, + "dtype": "bfloat16" }, "vllm_client_parameters": { + }, + "sglang_server_parameters": { + "disable_radix_cache": "", + "dtype": "bfloat16" + }, + "sglang_client_parameters": { } } ] \ No newline at end of file diff --git a/.buildkite/release-pipeline.yaml b/.buildkite/release-pipeline.yaml index e72138e29dd65..3b7fa0f2d94b3 100644 --- a/.buildkite/release-pipeline.yaml +++ b/.buildkite/release-pipeline.yaml @@ -3,7 +3,7 @@ steps: agents: queue: cpu_queue commands: - - "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg buildkite_commit=$BUILDKITE_COMMIT --build-arg USE_SCCACHE=1 --build-arg CUDA_VERSION=12.1.0 --tag vllm-ci:build-image --target build --progress plain ." + - "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.1.0 --tag vllm-ci:build-image --target build --progress plain ." - "mkdir artifacts" - "docker run --rm -v $(pwd)/artifacts:/artifacts_host vllm-ci:build-image bash -c 'cp -r dist /artifacts_host && chmod -R a+rw /artifacts_host'" # rename the files to change linux -> manylinux1 @@ -22,7 +22,7 @@ steps: agents: queue: cpu_queue commands: - - "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg buildkite_commit=$BUILDKITE_COMMIT --build-arg USE_SCCACHE=1 --build-arg CUDA_VERSION=11.8.0 --tag vllm-ci:build-image --target build --progress plain ." + - "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=11.8.0 --tag vllm-ci:build-image --target build --progress plain ." - "mkdir artifacts" - "docker run --rm -v $(pwd)/artifacts:/artifacts_host vllm-ci:build-image bash -c 'cp -r dist /artifacts_host && chmod -R a+rw /artifacts_host'" # rename the files to change linux -> manylinux1 diff --git a/.buildkite/run-amd-test.sh b/.buildkite/run-amd-test.sh index df201cdc7c554..329cc42558da6 100755 --- a/.buildkite/run-amd-test.sh +++ b/.buildkite/run-amd-test.sh @@ -31,8 +31,8 @@ cleanup_docker() { echo "Disk usage is above $threshold%. Cleaning up Docker images and volumes..." # Remove dangling images (those that are not tagged and not used by any container) docker image prune -f - # Remove unused volumes - docker volume prune -f + # Remove unused volumes / force the system prune for old images as well. + docker volume prune -f && docker system prune --force --filter "until=72h" --all echo "Docker images and volumes cleanup completed." else echo "Disk usage is below $threshold%. No cleanup needed." diff --git a/.buildkite/run-cpu-test-ppc64le.sh b/.buildkite/run-cpu-test-ppc64le.sh index 49ae838cf0690..fd60f5b6afeca 100755 --- a/.buildkite/run-cpu-test-ppc64le.sh +++ b/.buildkite/run-cpu-test-ppc64le.sh @@ -18,7 +18,13 @@ docker run -itd --entrypoint /bin/bash -v ~/.cache/huggingface:/root/.cache/hugg # Run basic model test docker exec cpu-test bash -c " pip install pytest matplotlib einops transformers_stream_generator - pytest -v -s tests/models -m \"not vlm\" --ignore=tests/models/test_embedding.py --ignore=tests/models/test_oot_registration.py --ignore=tests/models/test_registry.py --ignore=tests/models/test_jamba.py --ignore=tests/models/test_danube3_4b.py" # Mamba and Danube3-4B on CPU is not supported + pytest -v -s tests/models -m \"not vlm\" \ + --ignore=tests/models/test_embedding.py \ + --ignore=tests/models/test_oot_registration.py \ + --ignore=tests/models/test_registry.py \ + --ignore=tests/models/test_jamba.py \ + --ignore=tests/models/test_mamba.py \ + --ignore=tests/models/test_danube3_4b.py" # Mamba kernels and Danube3-4B on CPU is not supported # online inference docker exec cpu-test bash -c " diff --git a/.buildkite/run-cpu-test.sh b/.buildkite/run-cpu-test.sh index 73ce82c5857ab..c331a9c49c0d0 100644 --- a/.buildkite/run-cpu-test.sh +++ b/.buildkite/run-cpu-test.sh @@ -23,16 +23,24 @@ docker exec cpu-test-avx2 bash -c "python3 examples/offline_inference.py" # Run basic model test docker exec cpu-test bash -c " pip install pytest matplotlib einops transformers_stream_generator datamodel_code_generator + pytest -v -s tests/models/encoder_decoder/language pytest -v -s tests/models/decoder_only/language \ --ignore=tests/models/test_fp8.py \ --ignore=tests/models/decoder_only/language/test_jamba.py \ + --ignore=tests/models/decoder_only/language/test_mamba.py \ + --ignore=tests/models/decoder_only/language/test_granitemoe.py \ --ignore=tests/models/decoder_only/language/test_danube3_4b.py" # Mamba and Danube3-4B on CPU is not supported # Run compressed-tensor test docker exec cpu-test bash -c " pytest -s -v \ tests/quantization/test_compressed_tensors.py::test_compressed_tensors_w8a8_static_setup \ - tests/quantization/test_compressed_tensors.py::test_compressed_tensors_w8a8_dynanmic_per_token" + tests/quantization/test_compressed_tensors.py::test_compressed_tensors_w8a8_dynamic_per_token" + +# Run AWQ test +docker exec cpu-test bash -c " + pytest -s -v \ + tests/quantization/test_ipex_quant.py" # online inference docker exec cpu-test bash -c " diff --git a/.buildkite/test-pipeline.yaml b/.buildkite/test-pipeline.yaml index bb42b5f29a725..9444dc43ea97e 100644 --- a/.buildkite/test-pipeline.yaml +++ b/.buildkite/test-pipeline.yaml @@ -9,6 +9,7 @@ # label(str): the name of the test. emoji allowed. # fast_check(bool): whether to run this on each commit on fastcheck pipeline. # fast_check_only(bool): run this test on fastcheck pipeline only +# nightly(bool): run this test in nightly pipeline only # optional(bool): never run this test by default (i.e. need to unblock manually) # command(str): the single command to run for tests. incompatible with commands. # commands(list): the list of commands to run for test. incompatbile with command. @@ -64,13 +65,21 @@ steps: fast_check: true source_file_dependencies: - vllm/ - - tests/basic_correctness + - tests/basic_correctness/test_basic_correctness + - tests/basic_correctness/test_cpu_offload + - tests/basic_correctness/test_preemption commands: - pytest -v -s basic_correctness/test_basic_correctness.py - pytest -v -s basic_correctness/test_cpu_offload.py + - VLLM_TEST_ENABLE_ARTIFICIAL_PREEMPT=1 pytest -v -s basic_correctness/test_preemption.py + +- label: Chunked Prefill Test + source_file_dependencies: + - vllm/ + - tests/basic_correctness/test_chunked_prefill + commands: - VLLM_ATTENTION_BACKEND=XFORMERS pytest -v -s basic_correctness/test_chunked_prefill.py - VLLM_ATTENTION_BACKEND=FLASH_ATTN pytest -v -s basic_correctness/test_chunked_prefill.py - - VLLM_TEST_ENABLE_ARTIFICIAL_PREEMPT=1 pytest -v -s basic_correctness/test_preemption.py - label: Core Test # 10min mirror_hardwares: [amd] @@ -90,7 +99,6 @@ steps: - vllm/ commands: - pip install -e ./plugins/vllm_add_dummy_model - - pip install git+https://github.com/EleutherAI/lm-evaluation-harness.git@a4987bba6e9e9b3f22bd3a6c1ecf0abd04fd5622#egg=lm_eval[api] - pytest -v -s entrypoints/llm --ignore=entrypoints/llm/test_lazy_outlines.py --ignore=entrypoints/llm/test_generate.py --ignore=entrypoints/llm/test_generate_multiple_loras.py --ignore=entrypoints/llm/test_guided_generate.py - pytest -v -s entrypoints/llm/test_lazy_outlines.py # it needs a clean process - pytest -v -s entrypoints/llm/test_generate.py # it needs a clean process @@ -110,7 +118,9 @@ steps: - vllm/core/ - tests/distributed - tests/spec_decode/e2e/test_integration_dist_tp4 + - tests/compile commands: + - pytest -v -s compile/test_basic_correctness.py - pytest -v -s distributed/test_pynccl.py - pytest -v -s spec_decode/e2e/test_integration_dist_tp4.py @@ -138,7 +148,9 @@ steps: source_file_dependencies: - vllm/ - tests/test_regression - command: pytest -v -s test_regression.py + commands: + - pip install modelscope + - pytest -v -s test_regression.py working_dir: "/vllm-workspace/tests" # optional - label: Engine Test # 10min @@ -169,6 +181,7 @@ steps: - python3 offline_inference_vision_language_multi_image.py - python3 tensorize_vllm_model.py --model facebook/opt-125m serialize --serialized-directory /tmp/ --suffix v1 && python3 tensorize_vllm_model.py --model facebook/opt-125m deserialize --path-to-tensors /tmp/vllm/facebook/opt-125m/v1/model.tensors - python3 offline_inference_encoder_decoder.py + - python3 offline_profile.py --model facebook/opt-125m - label: Prefix Caching Test # 9min #mirror_hardwares: [amd] @@ -199,10 +212,8 @@ steps: - vllm/spec_decode - tests/spec_decode commands: - # See https://github.com/vllm-project/vllm/issues/5152 - - export VLLM_ATTENTION_BACKEND=XFORMERS - pytest -v -s spec_decode/e2e/test_multistep_correctness.py - - pytest -v -s spec_decode --ignore=spec_decode/e2e/test_multistep_correctness.py + - VLLM_ATTENTION_BACKEND=FLASH_ATTN pytest -v -s spec_decode --ignore=spec_decode/e2e/test_multistep_correctness.py - label: LoRA Test %N # 15min each mirror_hardwares: [amd] @@ -218,7 +229,10 @@ steps: - vllm/ - tests/compile commands: - - pytest -v -s compile/test_full_graph_smoke.py + - pytest -v -s compile/test_basic_correctness.py + # these tests need to be separated, cannot combine + - pytest -v -s compile/piecewise/test_simple.py + - pytest -v -s compile/piecewise/test_toy_llama.py - label: "PyTorch Fullgraph Test" # 18min source_file_dependencies: @@ -262,7 +276,7 @@ steps: - csrc/ - vllm/model_executor/layers/quantization - tests/quantization - command: pytest -v -s quantization + command: VLLM_TEST_FORCE_LOAD_FORMAT=auto pytest -v -s quantization - label: LM Eval Small Models # 53min working_dir: "/vllm-workspace/.buildkite/lm-eval-harness" @@ -270,7 +284,6 @@ steps: - csrc/ - vllm/model_executor/layers/quantization commands: - - pip install lm-eval - export VLLM_WORKER_MULTIPROC_METHOD=spawn - bash ./run-tests.sh -c configs/models-small.txt -t 1 @@ -301,40 +314,65 @@ steps: - pytest -v -s models/test_oot_registration.py # it needs a clean process - pytest -v -s models/*.py --ignore=models/test_oot_registration.py -- label: Decoder-only Language Models Test # 1h36min +- label: Decoder-only Language Models Test (Standard) # 35min #mirror_hardwares: [amd] source_file_dependencies: - vllm/ - tests/models/decoder_only/language commands: - - pytest -v -s models/decoder_only/language + - pytest -v -s models/decoder_only/language/test_models.py + - pytest -v -s models/decoder_only/language/test_big_models.py + +- label: Decoder-only Language Models Test (Extended) # 1h20min + nightly: true + source_file_dependencies: + - vllm/ + - tests/models/decoder_only/language + commands: + - pytest -v -s models/decoder_only/language --ignore=models/decoder_only/language/test_models.py --ignore=models/decoder_only/language/test_big_models.py -- label: Decoder-only Multi-Modal Models Test # 1h31min +- label: Decoder-only Multi-Modal Models Test (Standard) #mirror_hardwares: [amd] source_file_dependencies: - vllm/ - tests/models/decoder_only/audio_language - tests/models/decoder_only/vision_language commands: - - pytest -v -s models/decoder_only/audio_language - - pytest -v -s models/decoder_only/vision_language + - pytest -v -s models/decoder_only/audio_language -m core_model + - pytest -v -s --ignore models/decoder_only/vision_language/test_phi3v.py models/decoder_only/vision_language -m core_model + +- label: Decoder-only Multi-Modal Models Test (Extended) + nightly: true + source_file_dependencies: + - vllm/ + - tests/models/decoder_only/audio_language + - tests/models/decoder_only/vision_language + commands: + - pytest -v -s models/decoder_only/audio_language -m 'not core_model' + # HACK - run phi3v tests separately to sidestep this transformers bug + # https://github.com/huggingface/transformers/issues/34307 + - pytest -v -s models/decoder_only/vision_language/test_phi3v.py + - pytest -v -s --ignore models/decoder_only/vision_language/test_phi3v.py models/decoder_only/vision_language -m 'not core_model' - label: Other Models Test # 6min #mirror_hardwares: [amd] source_file_dependencies: - vllm/ - tests/models/embedding/language + - tests/models/embedding/vision_language - tests/models/encoder_decoder/language - tests/models/encoder_decoder/vision_language commands: - pytest -v -s models/embedding/language + - pytest -v -s models/embedding/vision_language - pytest -v -s models/encoder_decoder/language - pytest -v -s models/encoder_decoder/vision_language +# This test is used only in PR development phase to test individual models and should never run on main - label: Custom Models Test - #mirror_hardwares: [amd] optional: true commands: + - echo 'Testing custom models...' # PR authors can temporarily add commands below to test individual models # e.g. pytest -v -s models/encoder_decoder/vision_language/test_mllama.py # *To avoid merge conflicts, remember to REMOVE (not just comment out) them before merging the PR* @@ -382,14 +420,14 @@ steps: - tests/distributed/ - vllm/compilation commands: - - pytest -v -s ./compile/test_full_graph_multi_gpu.py + - pytest -v -s ./compile/test_basic_correctness.py - pytest -v -s ./compile/test_wrapper.py - VLLM_TEST_SAME_HOST=1 torchrun --nproc-per-node=4 distributed/test_same_node.py | grep -q 'Same node test passed' - TARGET_TEST_SUITE=L4 pytest basic_correctness/ -v -s -m distributed_2_gpus # Avoid importing model tests that cause CUDA reinitialization error - pytest models/encoder_decoder/language/test_bart.py -v -s -m distributed_2_gpus - pytest models/encoder_decoder/vision_language/test_broadcast.py -v -s -m distributed_2_gpus - - pytest models/decoder_only/vision_language/test_broadcast.py -v -s -m distributed_2_gpus + - pytest models/decoder_only/vision_language/test_models.py -v -s -m distributed_2_gpus - pytest -v -s spec_decode/e2e/test_integration_dist_tp2.py - pip install -e ./plugins/vllm_add_dummy_model - pytest -v -s distributed/test_distributed_oot.py @@ -484,6 +522,5 @@ steps: - csrc/ - vllm/model_executor/layers/quantization commands: - - pip install lm-eval - export VLLM_WORKER_MULTIPROC_METHOD=spawn - bash ./run-tests.sh -c configs/models-large.txt -t 4 diff --git a/.dockerignore b/.dockerignore index 17ed0d97c88b3..3863656915d03 100644 --- a/.dockerignore +++ b/.dockerignore @@ -1,6 +1,33 @@ -/.github/ /.venv /build dist -Dockerfile* vllm/*.so + +# Byte-compiled / optimized / DLL files +__pycache__/ +*.py[cod] +*$py.class + +.mypy_cache + +# Distribution / packaging +.Python +/build/ +cmake-build-*/ +CMakeUserPresets.json +develop-eggs/ +/dist/ +downloads/ +eggs/ +.eggs/ +lib/ +lib64/ +parts/ +sdist/ +var/ +wheels/ +share/python-wheels/ +*.egg-info/ +.installed.cfg +*.egg +MANIFEST diff --git a/.github/CODEOWNERS b/.github/CODEOWNERS new file mode 100644 index 0000000000000..cd721971d01d6 --- /dev/null +++ b/.github/CODEOWNERS @@ -0,0 +1,30 @@ +# See https://help.github.com/articles/about-codeowners/ +# for more info about CODEOWNERS file + +# This lists cover the "core" components of vLLM that require careful review +/vllm/attention/backends/abstract.py @WoosukKwon @zhuohan123 @youkaichao @alexm-neuralmagic @comaniac @njhill +/vllm/core @WoosukKwon @zhuohan123 @youkaichao @alexm-neuralmagic @comaniac @njhill +/vllm/engine/llm_engine.py @WoosukKwon @zhuohan123 @youkaichao @alexm-neuralmagic @comaniac @njhill +/vllm/executor/executor_base.py @WoosukKwon @zhuohan123 @youkaichao @alexm-neuralmagic @comaniac @njhill +/vllm/worker/worker_base.py @WoosukKwon @zhuohan123 @youkaichao @alexm-neuralmagic @comaniac @njhill +/vllm/worker/worker.py @WoosukKwon @zhuohan123 @youkaichao @alexm-neuralmagic @comaniac @njhill +/vllm/model_executor/layers/sampler.py @WoosukKwon @zhuohan123 @youkaichao @alexm-neuralmagic @comaniac @njhill +CMakeLists.txt @tlrmchlsmth @WoosukKwon + +# Test ownership +/tests/async_engine @njhill @robertgshaw2-neuralmagic @simon-mo +/tests/test_inputs.py @DarkLight1337 @ywang96 +/tests/entrypoints @DarkLight1337 @robertgshaw2-neuralmagic @simon-mo +/tests/models @DarkLight1337 @ywang96 +/tests/multimodal @DarkLight1337 @ywang96 +/tests/prefix_caching @comaniac @KuntaiDu +/tests/spec_decode @njhill @LiuXiaoxuanPKU +/tests/kernels @tlrmchlsmth @WoosukKwon +/tests/quantization @mgoin @robertgshaw2-neuralmagic +/.buildkite/lm-eval-harness @mgoin @simon-mo +/tests/distributed/test_multi_node_assignment.py @youkaichao +/tests/distributed/test_pipeline_parallel.py @youkaichao +/tests/distributed/test_same_node.py @youkaichao +/tests/multi_step @alexm-neuralmagic @comaniac +/tests/weight_loading @mgoin @youkaichao +/tests/basic_correctness/test_chunked_prefill @rkooo567 @comaniac diff --git a/.github/dependabot.yml b/.github/dependabot.yml new file mode 100644 index 0000000000000..4f54eea564ecb --- /dev/null +++ b/.github/dependabot.yml @@ -0,0 +1,32 @@ +version: 2 +updates: + # Maintain dependencies for GitHub Actions + - package-ecosystem: "github-actions" + directory: "/" + schedule: + interval: "weekly" + - package-ecosystem: "pip" + directory: "/" + schedule: + interval: "weekly" + labels: ["dependencies"] + open-pull-requests-limit: 5 + reviewers: ["khluu", "simon-mo"] + allow: + - dependency-type: "all" + ignore: + - dependency-name: "torch" + - dependency-name: "torchvision" + - dependency-name: "xformers" + - dependency-name: "lm-format-enforcer" + - dependency-name: "gguf" + - dependency-name: "compressed-tensors" + - dependency-name: "ray[adag]" + - dependency-name: "lm-eval" + groups: + patch-update: + applies-to: version-updates + update-types: ["patch"] + minor-update: + applies-to: version-updates + update-types: ["minor"] diff --git a/.github/mergify.yml b/.github/mergify.yml new file mode 100644 index 0000000000000..1ce5039a061b2 --- /dev/null +++ b/.github/mergify.yml @@ -0,0 +1,58 @@ +pull_request_rules: +- name: label-documentation + description: Automatically apply documentation label + conditions: + - or: + - files~=^[^/]+\.md$ + - files~=^docs/ + actions: + label: + add: + - documentation + +- name: label-ci-build + description: Automatically apply ci/build label + conditions: + - or: + - files~=^\.github/ + - files~=\.buildkite/ + - files~=^cmake/ + - files=CMakeLists.txt + - files~=^Dockerfile + - files~=^requirements.*\.txt + - files=setup.py + actions: + label: + add: + - ci/build + +- name: label-frontend + description: Automatically apply frontend label + conditions: + - files~=^vllm/entrypoints/ + actions: + label: + add: + - frontend + +- name: ping author on conflicts and add 'needs-rebase' label + conditions: + - conflict + - -closed + actions: + label: + add: + - needs-rebase + comment: + message: | + This pull request has merge conflicts that must be resolved before it can be + merged. @{{author}} please rebase it. https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/working-with-forks/syncing-a-fork + +- name: remove 'needs-rebase' label when conflict is resolved + conditions: + - -conflict + - -closed + actions: + label: + remove: + - needs-rebase diff --git a/.github/workflows/actionlint.yml b/.github/workflows/actionlint.yml new file mode 100644 index 0000000000000..b80749aaa8fec --- /dev/null +++ b/.github/workflows/actionlint.yml @@ -0,0 +1,38 @@ +name: Lint GitHub Actions workflows +on: + push: + branches: + - "main" + paths: + - '.github/workflows/*.ya?ml' + - '.github/workflows/actionlint.*' + pull_request: + branches: + - "main" + paths: + - '.github/workflows/*.ya?ml' + - '.github/workflows/actionlint.*' + +env: + LC_ALL: en_US.UTF-8 + +defaults: + run: + shell: bash + +permissions: + contents: read + +jobs: + actionlint: + runs-on: ubuntu-latest + steps: + - name: "Checkout" + uses: actions/checkout@eef61447b9ff4aafe5dcd4e0bbf5d482be7e7871 # v4.2.1 + with: + fetch-depth: 0 + + - name: "Run actionlint" + run: | + echo "::add-matcher::.github/workflows/matchers/actionlint.json" + tools/actionlint.sh -color diff --git a/.github/workflows/add_label_automerge.yml b/.github/workflows/add_label_automerge.yml index cd53b764c7200..c9d6d4259df99 100644 --- a/.github/workflows/add_label_automerge.yml +++ b/.github/workflows/add_label_automerge.yml @@ -8,7 +8,7 @@ jobs: runs-on: ubuntu-latest steps: - name: Add label - uses: actions/github-script@v5 + uses: actions/github-script@60a0d83039c74a4aee543508d2ffcb1c3799cdea # v7.0.1 with: script: | github.rest.issues.addLabels({ diff --git a/.github/workflows/clang-format.yml b/.github/workflows/clang-format.yml index d5f37396e69d7..68d60d7365ed1 100644 --- a/.github/workflows/clang-format.yml +++ b/.github/workflows/clang-format.yml @@ -17,9 +17,9 @@ jobs: matrix: python-version: ["3.11"] steps: - - uses: actions/checkout@v2 + - uses: actions/checkout@eef61447b9ff4aafe5dcd4e0bbf5d482be7e7871 # v4.2.1 - name: Set up Python ${{ matrix.python-version }} - uses: actions/setup-python@v2 + uses: actions/setup-python@f677139bbe7f9c59b41e40162b753c062f5d49a3 # v5.2.0 with: python-version: ${{ matrix.python-version }} - name: Install dependencies @@ -38,4 +38,4 @@ jobs: ) find csrc/ \( -name '*.h' -o -name '*.cpp' -o -name '*.cu' -o -name '*.cuh' \) -print \ | grep -vFf <(printf "%s\n" "${EXCLUDES[@]}") \ - | xargs clang-format --dry-run --Werror \ No newline at end of file + | xargs clang-format --dry-run --Werror diff --git a/.github/workflows/matchers/actionlint.json b/.github/workflows/matchers/actionlint.json new file mode 100644 index 0000000000000..4613e1617bfe2 --- /dev/null +++ b/.github/workflows/matchers/actionlint.json @@ -0,0 +1,17 @@ +{ + "problemMatcher": [ + { + "owner": "actionlint", + "pattern": [ + { + "regexp": "^(?:\\x1b\\[\\d+m)?(.+?)(?:\\x1b\\[\\d+m)*:(?:\\x1b\\[\\d+m)*(\\d+)(?:\\x1b\\[\\d+m)*:(?:\\x1b\\[\\d+m)*(\\d+)(?:\\x1b\\[\\d+m)*: (?:\\x1b\\[\\d+m)*(.+?)(?:\\x1b\\[\\d+m)* \\[(.+?)\\]$", + "file": 1, + "line": 2, + "column": 3, + "message": 4, + "code": 5 + } + ] + } + ] +} diff --git a/.github/workflows/matchers/mypy.json b/.github/workflows/matchers/mypy.json new file mode 100644 index 0000000000000..f048fce528941 --- /dev/null +++ b/.github/workflows/matchers/mypy.json @@ -0,0 +1,16 @@ +{ + "problemMatcher": [ + { + "owner": "mypy", + "pattern": [ + { + "regexp": "^(.+):(\\d+):\\s(error|warning):\\s(.+)$", + "file": 1, + "line": 2, + "severity": 3, + "message": 4 + } + ] + } + ] +} diff --git a/.github/workflows/matchers/ruff.json b/.github/workflows/matchers/ruff.json new file mode 100644 index 0000000000000..f6d4479ee1996 --- /dev/null +++ b/.github/workflows/matchers/ruff.json @@ -0,0 +1,17 @@ +{ + "problemMatcher": [ + { + "owner": "ruff", + "pattern": [ + { + "regexp": "^(.+?):(\\d+):(\\d+): (\\w+): (.+)$", + "file": 1, + "line": 2, + "column": 3, + "code": 4, + "message": 5 + } + ] + } + ] + } diff --git a/.github/workflows/mypy.yaml b/.github/workflows/mypy.yaml index ea767f4c3e264..5f1e5f8eeaf7d 100644 --- a/.github/workflows/mypy.yaml +++ b/.github/workflows/mypy.yaml @@ -11,15 +11,15 @@ on: - main jobs: - ruff: + mypy: runs-on: ubuntu-latest strategy: matrix: python-version: ["3.8", "3.9", "3.10", "3.11", "3.12"] steps: - - uses: actions/checkout@v2 + - uses: actions/checkout@eef61447b9ff4aafe5dcd4e0bbf5d482be7e7871 # v4.2.1 - name: Set up Python ${{ matrix.python-version }} - uses: actions/setup-python@v2 + uses: actions/setup-python@f677139bbe7f9c59b41e40162b753c062f5d49a3 # v5.2.0 with: python-version: ${{ matrix.python-version }} - name: Install dependencies @@ -32,15 +32,5 @@ jobs: pip install types-setuptools - name: Mypy run: | - mypy - mypy tests --follow-imports skip - mypy vllm/attention --follow-imports skip - mypy vllm/distributed --follow-imports skip - mypy vllm/engine --follow-imports skip - mypy vllm/executor --follow-imports skip - mypy vllm/lora --follow-imports skip - mypy vllm/model_executor --follow-imports skip - mypy vllm/prompt_adapter --follow-imports skip - mypy vllm/spec_decode --follow-imports skip - mypy vllm/worker --follow-imports skip - + echo "::add-matcher::.github/workflows/matchers/mypy.json" + tools/mypy.sh 1 diff --git a/.github/workflows/publish.yml b/.github/workflows/publish.yml index aeeaf6efab043..f959a1cacf866 100644 --- a/.github/workflows/publish.yml +++ b/.github/workflows/publish.yml @@ -21,16 +21,16 @@ jobs: upload_url: ${{ steps.create_release.outputs.upload_url }} steps: - name: Checkout - uses: actions/checkout@v3 + uses: actions/checkout@eef61447b9ff4aafe5dcd4e0bbf5d482be7e7871 # v4.2.1 - name: Extract branch info shell: bash run: | - echo "release_tag=${GITHUB_REF#refs/*/}" >> $GITHUB_ENV + echo "release_tag=${GITHUB_REF#refs/*/}" >> "$GITHUB_ENV" - name: Create Release id: create_release - uses: "actions/github-script@v6" + uses: actions/github-script@60a0d83039c74a4aee543508d2ffcb1c3799cdea # v7.0.1 env: RELEASE_TAG: ${{ env.release_tag }} with: @@ -54,10 +54,10 @@ jobs: steps: - name: Checkout - uses: actions/checkout@v3 + uses: actions/checkout@eef61447b9ff4aafe5dcd4e0bbf5d482be7e7871 # v4.2.1 - name: Setup ccache - uses: hendrikmuhs/ccache-action@v1.2 + uses: hendrikmuhs/ccache-action@ed74d11c0b343532753ecead8a951bb09bb34bc9 # v1.2.14 with: create-symlink: true key: ${{ github.job }}-${{ matrix.python-version }}-${{ matrix.cuda-version }} @@ -68,7 +68,7 @@ jobs: bash -x .github/workflows/scripts/env.sh - name: Set up Python - uses: actions/setup-python@v4 + uses: actions/setup-python@f677139bbe7f9c59b41e40162b753c062f5d49a3 # v5.2.0 with: python-version: ${{ matrix.python-version }} @@ -86,13 +86,13 @@ jobs: CMAKE_BUILD_TYPE: Release # do not compile with debug symbol to reduce wheel size run: | bash -x .github/workflows/scripts/build.sh ${{ matrix.python-version }} ${{ matrix.cuda-version }} - wheel_name=$(ls dist/*whl | xargs -n 1 basename) + wheel_name=$(find dist -name "*whl" -print0 | xargs -0 -n 1 basename) asset_name=${wheel_name//"linux"/"manylinux1"} - echo "wheel_name=${wheel_name}" >> $GITHUB_ENV - echo "asset_name=${asset_name}" >> $GITHUB_ENV + echo "wheel_name=${wheel_name}" >> "$GITHUB_ENV" + echo "asset_name=${asset_name}" >> "$GITHUB_ENV" - name: Upload Release Asset - uses: actions/upload-release-asset@v1 + uses: actions/upload-release-asset@e8f9f06c4b078e705bd2ea027f0926603fc9b4d5 # v1.0.2 env: GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }} with: diff --git a/.github/workflows/reminder_comment.yml b/.github/workflows/reminder_comment.yml index 99827756d2066..df62539c0b3d9 100644 --- a/.github/workflows/reminder_comment.yml +++ b/.github/workflows/reminder_comment.yml @@ -8,7 +8,7 @@ jobs: runs-on: ubuntu-latest steps: - name: Remind to run full CI on PR - uses: actions/github-script@v6 + uses: actions/github-script@60a0d83039c74a4aee543508d2ffcb1c3799cdea # v7.0.1 with: script: | github.rest.issues.createComment({ diff --git a/.github/workflows/ruff.yml b/.github/workflows/ruff.yml index 90735d6e2bbf9..9cc8a9e914474 100644 --- a/.github/workflows/ruff.yml +++ b/.github/workflows/ruff.yml @@ -17,9 +17,9 @@ jobs: matrix: python-version: ["3.8", "3.9", "3.10", "3.11", "3.12"] steps: - - uses: actions/checkout@v2 + - uses: actions/checkout@eef61447b9ff4aafe5dcd4e0bbf5d482be7e7871 # v4.2.1 - name: Set up Python ${{ matrix.python-version }} - uses: actions/setup-python@v2 + uses: actions/setup-python@f677139bbe7f9c59b41e40162b753c062f5d49a3 # v5.2.0 with: python-version: ${{ matrix.python-version }} - name: Install dependencies @@ -28,7 +28,8 @@ jobs: pip install -r requirements-lint.txt - name: Analysing the code with ruff run: | - ruff check . + echo "::add-matcher::.github/workflows/matchers/ruff.json" + ruff check --output-format github . - name: Spelling check with codespell run: | codespell --toml pyproject.toml diff --git a/.github/workflows/scripts/build.sh b/.github/workflows/scripts/build.sh index cda0c28c75c2a..122e4e101e201 100644 --- a/.github/workflows/scripts/build.sh +++ b/.github/workflows/scripts/build.sh @@ -1,4 +1,5 @@ #!/bin/bash +set -eux python_executable=python$1 cuda_home=/usr/local/cuda-$2 @@ -8,13 +9,15 @@ PATH=${cuda_home}/bin:$PATH LD_LIBRARY_PATH=${cuda_home}/lib64:$LD_LIBRARY_PATH # Install requirements -$python_executable -m pip install wheel packaging 'setuptools-scm>=8' -$python_executable -m pip install -r requirements-cuda.txt +$python_executable -m pip install -r requirements-build.txt -r requirements-cuda.txt # Limit the number of parallel jobs to avoid OOM export MAX_JOBS=1 # Make sure release wheels are built for the following architectures export TORCH_CUDA_ARCH_LIST="7.0 7.5 8.0 8.6 8.9 9.0+PTX" export VLLM_FA_CMAKE_GPU_ARCHES="80-real;90-real" + +bash tools/check_repo.sh + # Build $python_executable setup.py bdist_wheel --dist-dir=dist diff --git a/.github/workflows/stale.yml b/.github/workflows/stale.yml new file mode 100644 index 0000000000000..81e7c9b050760 --- /dev/null +++ b/.github/workflows/stale.yml @@ -0,0 +1,52 @@ +name: 'Close inactive issues and PRs' + +on: + schedule: + # Daily at 1:30 AM UTC + - cron: '30 1 * * *' + +jobs: + close-issues-and-pull-requests: + permissions: + issues: write + pull-requests: write + actions: write + runs-on: ubuntu-latest + steps: + - uses: actions/stale@28ca1036281a5e5922ead5184a1bbf96e5fc984e # v9.0.0 + with: + # Increasing this value ensures that changes to this workflow + # propagate to all issues and PRs in days rather than months + operations-per-run: 1000 + + exempt-draft-pr: true + exempt-issue-labels: 'keep-open' + exempt-pr-labels: 'keep-open' + + labels-to-add-when-unstale: 'unstale' + labels-to-remove-when-stale: 'unstale' + + days-before-issue-stale: 90 + days-before-issue-close: 30 + stale-issue-label: 'stale' + stale-issue-message: > + This issue has been automatically marked as stale because it has not + had any activity within 90 days. It will be automatically closed if no + further activity occurs within 30 days. Leave a comment if + you feel this issue should remain open. Thank you! + close-issue-message: > + This issue has been automatically closed due to inactivity. Please + feel free to reopen if you feel it is still relevant. Thank you! + + days-before-pr-stale: 90 + days-before-pr-close: 30 + stale-pr-label: 'stale' + stale-pr-message: > + This pull request has been automatically marked as stale because it + has not had any activity within 90 days. It will be automatically + closed if no further activity occurs within 30 days. Leave a comment + if you feel this pull request should remain open. Thank you! + close-pr-message: > + This pull request has been automatically closed due to inactivity. + Please feel free to reopen if you intend to continue working on it. + Thank you! diff --git a/.github/workflows/yapf.yml b/.github/workflows/yapf.yml index c89f82dfaaaf6..9f06b35c19e32 100644 --- a/.github/workflows/yapf.yml +++ b/.github/workflows/yapf.yml @@ -16,9 +16,9 @@ jobs: matrix: python-version: ["3.8", "3.9", "3.10", "3.11", "3.12"] steps: - - uses: actions/checkout@v2 + - uses: actions/checkout@eef61447b9ff4aafe5dcd4e0bbf5d482be7e7871 # v4.2.1 - name: Set up Python ${{ matrix.python-version }} - uses: actions/setup-python@v2 + uses: actions/setup-python@f677139bbe7f9c59b41e40162b753c062f5d49a3 # v5.2.0 with: python-version: ${{ matrix.python-version }} - name: Install dependencies diff --git a/.gitignore b/.gitignore index 5367ece834890..1ea6e3419db2a 100644 --- a/.gitignore +++ b/.gitignore @@ -199,3 +199,6 @@ hip_compat.h # Benchmark dataset benchmarks/*.json + +# Linting +actionlint diff --git a/.readthedocs.yaml b/.readthedocs.yaml index f1959ad2743f3..42cbf18a0f712 100644 --- a/.readthedocs.yaml +++ b/.readthedocs.yaml @@ -13,10 +13,10 @@ sphinx: fail_on_warning: true # If using Sphinx, optionally build your docs in additional formats such as PDF -formats: - - pdf +formats: [] # Optionally declare the Python requirements required to build your docs python: install: - requirements: docs/requirements-docs.txt + diff --git a/CMakeLists.txt b/CMakeLists.txt index e531a410ec8c8..1a6a311e97633 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -49,7 +49,7 @@ set(HIP_SUPPORTED_ARCHS "gfx906;gfx908;gfx90a;gfx940;gfx941;gfx942;gfx1030;gfx11 # requirements.txt files and should be kept consistent. The ROCm torch # versions are derived from Dockerfile.rocm # -set(TORCH_SUPPORTED_VERSION_CUDA "2.4.0") +set(TORCH_SUPPORTED_VERSION_CUDA "2.5.0") set(TORCH_SUPPORTED_VERSION_ROCM "2.5.0") # @@ -83,24 +83,6 @@ endif() # find_package(Torch REQUIRED) -# -message(STATUS "Enabling core extension.") - -# Define _core_C extension -# built for (almost) every target platform, (excludes TPU and Neuron) - -set(VLLM_EXT_SRC - "csrc/core/torch_bindings.cpp") - -define_gpu_extension_target( - _core_C - DESTINATION vllm - LANGUAGE CXX - SOURCES ${VLLM_EXT_SRC} - COMPILE_FLAGS ${CXX_COMPILE_FLAGS} - USE_SABI 3 - WITH_SOABI) - # # Forward the non-CUDA device extensions to external CMake scripts. # @@ -143,14 +125,32 @@ else() message(FATAL_ERROR "Can't find CUDA or HIP installation.") endif() -# -# Override the GPU architectures detected by cmake/torch and filter them by -# the supported versions for the current language. -# The final set of arches is stored in `VLLM_GPU_ARCHES`. -# -override_gpu_arches(VLLM_GPU_ARCHES - ${VLLM_GPU_LANG} - "${${VLLM_GPU_LANG}_SUPPORTED_ARCHS}") + +if(VLLM_GPU_LANG STREQUAL "CUDA") + # + # For cuda we want to be able to control which architectures we compile for on + # a per-file basis in order to cut down on compile time. So here we extract + # the set of architectures we want to compile for and remove the from the + # CMAKE_CUDA_FLAGS so that they are not applied globally. + # + clear_cuda_arches(CUDA_ARCH_FLAGS) + extract_unique_cuda_archs_ascending(CUDA_ARCHS "${CUDA_ARCH_FLAGS}") + message(STATUS "CUDA target architectures: ${CUDA_ARCHS}") + # Filter the target architectures by the supported supported archs + # since for some files we will build for all CUDA_ARCHS. + cuda_archs_loose_intersection(CUDA_ARCHS + "${CUDA_SUPPORTED_ARCHS}" "${CUDA_ARCHS}") + message(STATUS "CUDA supported target architectures: ${CUDA_ARCHS}") +else() + # + # For other GPU targets override the GPU architectures detected by cmake/torch + # and filter them by the supported versions for the current language. + # The final set of arches is stored in `VLLM_GPU_ARCHES`. + # + override_gpu_arches(VLLM_GPU_ARCHES + ${VLLM_GPU_LANG} + "${${VLLM_GPU_LANG}_SUPPORTED_ARCHS}") +endif() # # Query torch for additional GPU compilation flags for the given @@ -169,12 +169,12 @@ endif() # # Use FetchContent for C++ dependencies that are compiled as part of vLLM's build process. -# Configure it to place files in vllm/.deps, in order to play nicely with sccache. +# setup.py will override FETCHCONTENT_BASE_DIR to play nicely with sccache. +# Each dependency that produces build artifacts should override its BINARY_DIR to avoid +# conflicts between build types. It should instead be set to ${CMAKE_BINARY_DIR}/. # include(FetchContent) -get_filename_component(PROJECT_ROOT_DIR "${CMAKE_CURRENT_SOURCE_DIR}" ABSOLUTE) -file(MAKE_DIRECTORY "${FETCHCONTENT_BASE_DIR}") -set(FETCHCONTENT_BASE_DIR "${PROJECT_ROOT_DIR}/.deps") +file(MAKE_DIRECTORY ${FETCHCONTENT_BASE_DIR}) # Ensure the directory exists message(STATUS "FetchContent base directory: ${FETCHCONTENT_BASE_DIR}") # @@ -195,7 +195,6 @@ set(VLLM_EXT_SRC "csrc/quantization/compressed_tensors/int8_quant_kernels.cu" "csrc/quantization/fp8/common.cu" "csrc/cuda_utils_kernels.cu" - "csrc/moe_align_block_size_kernels.cu" "csrc/prepare_inputs/advance_step.cu" "csrc/torch_bindings.cpp") @@ -223,30 +222,89 @@ if(VLLM_GPU_LANG STREQUAL "CUDA") "csrc/mamba/causal_conv1d/causal_conv1d.cu" "csrc/quantization/aqlm/gemm_kernels.cu" "csrc/quantization/awq/gemm_kernels.cu" - "csrc/quantization/marlin/dense/marlin_cuda_kernel.cu" - "csrc/quantization/marlin/sparse/marlin_24_cuda_kernel.cu" - "csrc/quantization/marlin/qqq/marlin_qqq_gemm_kernel.cu" - "csrc/quantization/gptq_marlin/gptq_marlin.cu" - "csrc/quantization/gptq_marlin/gptq_marlin_repack.cu" - "csrc/quantization/gptq_marlin/awq_marlin_repack.cu" "csrc/quantization/gguf/gguf_kernel.cu" - "csrc/quantization/fp8/fp8_marlin.cu" "csrc/custom_all_reduce.cu" "csrc/permute_cols.cu" - "csrc/quantization/cutlass_w8a8/scaled_mm_entry.cu" - "csrc/quantization/cutlass_w8a8/scaled_mm_c2x.cu" - "csrc/quantization/cutlass_w8a8/scaled_mm_c3x.cu") + "csrc/quantization/cutlass_w8a8/scaled_mm_entry.cu") + + set_gencode_flags_for_srcs( + SRCS "${VLLM_EXT_SRC}" + CUDA_ARCHS "${CUDA_ARCHS}") + + # Only build Marlin kernels if we are building for at least some compatible archs. + # Keep building Marlin for 9.0 as there are some group sizes and shapes that + # are not supported by Machete yet. + cuda_archs_loose_intersection(MARLIN_ARCHS "8.0;8.6;8.9;9.0" ${CUDA_ARCHS}) + if (MARLIN_ARCHS) + set(MARLIN_SRCS + "csrc/quantization/fp8/fp8_marlin.cu" + "csrc/quantization/marlin/dense/marlin_cuda_kernel.cu" + "csrc/quantization/marlin/sparse/marlin_24_cuda_kernel.cu" + "csrc/quantization/marlin/qqq/marlin_qqq_gemm_kernel.cu" + "csrc/quantization/gptq_marlin/gptq_marlin.cu" + "csrc/quantization/gptq_marlin/gptq_marlin_repack.cu" + "csrc/quantization/gptq_marlin/awq_marlin_repack.cu") + set_gencode_flags_for_srcs( + SRCS "${MARLIN_SRCS}" + CUDA_ARCHS "${MARLIN_ARCHS}") + list(APPEND VLLM_EXT_SRC "${MARLIN_SRCS}") + message(STATUS "Building Marlin kernels for archs: ${MARLIN_ARCHS}") + else() + message(STATUS "Not building Marlin kernels as no compatible archs found" + " in CUDA target architectures") + endif() + + # + # The cutlass_scaled_mm kernels for Hopper (c3x, i.e. CUTLASS 3.x) require + # CUDA 12.0 or later (and only work on Hopper, 9.0/9.0a for now). + cuda_archs_loose_intersection(SCALED_MM_3X_ARCHS "9.0;9.0a" "${CUDA_ARCHS}") + if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.0 AND SCALED_MM_3X_ARCHS) + set(SRCS "csrc/quantization/cutlass_w8a8/scaled_mm_c3x.cu") + set_gencode_flags_for_srcs( + SRCS "${SRCS}" + CUDA_ARCHS "${SCALED_MM_3X_ARCHS}") + list(APPEND VLLM_EXT_SRC "${SRCS}") + list(APPEND VLLM_GPU_FLAGS "-DENABLE_SCALED_MM_C3X=1") + message(STATUS "Building scaled_mm_c3x for archs: ${SCALED_MM_3X_ARCHS}") + else() + if (NOT ${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.0 AND SCALED_MM_3X_ARCHS) + message(STATUS "Not building scaled_mm_c3x as CUDA Compiler version is " + "not >= 12.0, we recommend upgrading to CUDA 12.0 or " + "later if you intend on running FP8 quantized models on " + "Hopper.") + else() + message(STATUS "Not building scaled_mm_c3x as no compatible archs found " + "in CUDA target architectures") + endif() + + # clear SCALED_MM_3X_ARCHS so the scaled_mm_c2x kernels know we didn't + # build any 3x kernels + set(SCALED_MM_3X_ARCHS) + endif() # - # The CUTLASS kernels for Hopper require sm90a to be enabled. - # This is done via the below gencode option, BUT that creates kernels for both sm90 and sm90a. - # That adds an extra 17MB to compiled binary, so instead we selectively enable it. - if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.0) - set_source_files_properties( - "csrc/quantization/cutlass_w8a8/scaled_mm_c3x.cu" - PROPERTIES - COMPILE_FLAGS - "-gencode arch=compute_90a,code=sm_90a") + # For the cutlass_scaled_mm kernels we want to build the c2x (CUTLASS 2.x) + # kernels for the remaining archs that are not already built for 3x. + cuda_archs_loose_intersection(SCALED_MM_2X_ARCHS + "7.5;8.0;8.6;8.9;9.0" "${CUDA_ARCHS}") + # subtract out the archs that are already built for 3x + list(REMOVE_ITEM SCALED_MM_2X_ARCHS ${SCALED_MM_3X_ARCHS}) + if (SCALED_MM_2X_ARCHS) + set(SRCS "csrc/quantization/cutlass_w8a8/scaled_mm_c2x.cu") + set_gencode_flags_for_srcs( + SRCS "${SRCS}" + CUDA_ARCHS "${SCALED_MM_2X_ARCHS}") + list(APPEND VLLM_EXT_SRC "${SRCS}") + list(APPEND VLLM_GPU_FLAGS "-DENABLE_SCALED_MM_C2X=1") + message(STATUS "Building scaled_mm_c2x for archs: ${SCALED_MM_2X_ARCHS}") + else() + if (SCALED_MM_3X_ARCHS) + message(STATUS "Not building scaled_mm_c2x as all archs are already built" + " for and covered by scaled_mm_c3x") + else() + message(STATUS "Not building scaled_mm_c2x as no compatible archs found " + "in CUDA target architectures") + endif() endif() @@ -254,47 +312,72 @@ if(VLLM_GPU_LANG STREQUAL "CUDA") # Machete kernels # The machete kernels only work on hopper and require CUDA 12.0 or later. - if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.0) + # Only build Machete kernels if we are building for something compatible with sm90a + cuda_archs_loose_intersection(MACHETE_ARCHS "9.0a" "${CUDA_ARCHS}") + if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.0 AND MACHETE_ARCHS) # # For the Machete kernels we automatically generate sources for various # preselected input type pairs and schedules. # Generate sources: - execute_process( - COMMAND ${CMAKE_COMMAND} -E env - PYTHONPATH=${CMAKE_CURRENT_SOURCE_DIR}/csrc/cutlass_extensions/:${CUTLASS_DIR}/python/:${VLLM_PYTHON_PATH}:$PYTHONPATH - ${Python_EXECUTABLE} ${CMAKE_CURRENT_SOURCE_DIR}/csrc/quantization/machete/generate.py - RESULT_VARIABLE machete_generation_result - OUTPUT_VARIABLE machete_generation_output - OUTPUT_FILE ${CMAKE_CURRENT_BINARY_DIR}/machete_generation.log - ERROR_FILE ${CMAKE_CURRENT_BINARY_DIR}/machete_generation.log - ) - - if (NOT machete_generation_result EQUAL 0) - message(FATAL_ERROR "Machete generation failed." - " Result: \"${machete_generation_result}\"" - "\nCheck the log for details: " - "${CMAKE_CURRENT_BINARY_DIR}/machete_generation.log") + set(MACHETE_GEN_SCRIPT + ${CMAKE_CURRENT_SOURCE_DIR}/csrc/quantization/machete/generate.py) + file(MD5 ${MACHETE_GEN_SCRIPT} MACHETE_GEN_SCRIPT_HASH) + + message(STATUS "Machete generation script hash: ${MACHETE_GEN_SCRIPT_HASH}") + message(STATUS "Last run machete generate script hash: $CACHE{MACHETE_GEN_SCRIPT_HASH}") + + if (NOT DEFINED CACHE{MACHETE_GEN_SCRIPT_HASH} + OR NOT $CACHE{MACHETE_GEN_SCRIPT_HASH} STREQUAL ${MACHETE_GEN_SCRIPT_HASH}) + execute_process( + COMMAND ${CMAKE_COMMAND} -E env + PYTHONPATH=${CMAKE_CURRENT_SOURCE_DIR}/csrc/cutlass_extensions/:${CUTLASS_DIR}/python/:${VLLM_PYTHON_PATH}:$PYTHONPATH + ${Python_EXECUTABLE} ${MACHETE_GEN_SCRIPT} + RESULT_VARIABLE machete_generation_result + OUTPUT_VARIABLE machete_generation_output + OUTPUT_FILE ${CMAKE_CURRENT_BINARY_DIR}/machete_generation.log + ERROR_FILE ${CMAKE_CURRENT_BINARY_DIR}/machete_generation.log + ) + + if (NOT machete_generation_result EQUAL 0) + message(FATAL_ERROR "Machete generation failed." + " Result: \"${machete_generation_result}\"" + "\nCheck the log for details: " + "${CMAKE_CURRENT_BINARY_DIR}/machete_generation.log") + else() + set(MACHETE_GEN_SCRIPT_HASH ${MACHETE_GEN_SCRIPT_HASH} + CACHE STRING "Last run machete generate script hash" FORCE) + message(STATUS "Machete generation completed successfully.") + endif() else() - message(STATUS "Machete generation completed successfully.") + message(STATUS "Machete generation script has not changed, skipping generation.") endif() # Add machete generated sources file(GLOB MACHETE_GEN_SOURCES "csrc/quantization/machete/generated/*.cu") list(APPEND VLLM_EXT_SRC ${MACHETE_GEN_SOURCES}) - message(STATUS "Machete generated sources: ${MACHETE_GEN_SOURCES}") - set_source_files_properties( - ${MACHETE_GEN_SOURCES} - PROPERTIES - COMPILE_FLAGS - "-gencode arch=compute_90a,code=sm_90a") + # forward compatible + set_gencode_flags_for_srcs( + SRCS "${MACHETE_GEN_SOURCES}" + CUDA_ARCHS "${MACHETE_ARCHS}") + + list(APPEND VLLM_EXT_SRC + csrc/quantization/machete/machete_pytorch.cu) + + message(STATUS "Building Machete kernels for archs: ${MACHETE_ARCHS}") + else() + if (NOT ${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.0 + AND MACHETE_ARCHS) + message(STATUS "Not building Machete kernels as CUDA Compiler version is " + "not >= 12.0, we recommend upgrading to CUDA 12.0 or " + "later if you intend on running w4a16 quantized models on " + "Hopper.") + else() + message(STATUS "Not building Machete kernels as no compatible archs " + "found in CUDA target architectures") + endif() endif() - - # Add pytorch binding for machete (add on even CUDA < 12.0 so that we can - # raise an error if the user that this was built with an incompatible - # CUDA version) - list(APPEND VLLM_EXT_SRC - csrc/quantization/machete/machete_pytorch.cu) +# if CUDA endif endif() message(STATUS "Enabling C extension.") @@ -321,16 +404,36 @@ target_compile_definitions(_C PRIVATE CUTLASS_ENABLE_DIRECT_CUDA_DRIVER_CALL=1) set(VLLM_MOE_EXT_SRC "csrc/moe/torch_bindings.cpp" + "csrc/moe/moe_align_sum_kernels.cu" "csrc/moe/topk_softmax_kernels.cu") +set_gencode_flags_for_srcs( + SRCS "${VLLM_MOE_EXT_SRC}" + CUDA_ARCHS "${CUDA_ARCHS}") + if(VLLM_GPU_LANG STREQUAL "CUDA") - list(APPEND VLLM_MOE_EXT_SRC - "csrc/moe/marlin_kernels/marlin_moe_kernel.h" - "csrc/moe/marlin_kernels/marlin_moe_kernel_ku4b8.h" - "csrc/moe/marlin_kernels/marlin_moe_kernel_ku4b8.cu" - "csrc/moe/marlin_kernels/marlin_moe_kernel_ku8b128.h" - "csrc/moe/marlin_kernels/marlin_moe_kernel_ku8b128.cu" - "csrc/moe/marlin_moe_ops.cu") + cuda_archs_loose_intersection(MARLIN_MOE_ARCHS "8.0;8.6;8.9;9.0" "${CUDA_ARCHS}") + if (MARLIN_MOE_ARCHS) + set(MARLIN_MOE_SRC + "csrc/moe/marlin_kernels/marlin_moe_kernel.h" + "csrc/moe/marlin_kernels/marlin_moe_kernel_ku4b8.h" + "csrc/moe/marlin_kernels/marlin_moe_kernel_ku4b8.cu" + "csrc/moe/marlin_kernels/marlin_moe_kernel_ku8b128.h" + "csrc/moe/marlin_kernels/marlin_moe_kernel_ku8b128.cu" + "csrc/moe/marlin_kernels/marlin_moe_kernel_ku4.h" + "csrc/moe/marlin_kernels/marlin_moe_kernel_ku4.cu" + "csrc/moe/marlin_moe_ops.cu") + + set_gencode_flags_for_srcs( + SRCS "${MARLIN_MOE_SRC}" + CUDA_ARCHS "${MARLIN_MOE_ARCHS}") + + list(APPEND VLLM_MOE_EXT_SRC "${MARLIN_MOE_SRC}") + message(STATUS "Building Marlin MOE kernels for archs: ${MARLIN_MOE_ARCHS}") + else() + message(STATUS "Not building Marlin MOE kernels as no compatible archs found" + " in CUDA target architectures") + endif() endif() message(STATUS "Enabling moe extension.") @@ -368,6 +471,17 @@ if (NOT VLLM_TARGET_DEVICE STREQUAL "cuda") return() endif () +# vLLM flash attention requires VLLM_GPU_ARCHES to contain the set of target +# arches in the CMake syntax (75-real, 89-virtual, etc), since we clear the +# arches in the CUDA case (and instead set the gencodes on a per file basis) +# we need to manually set VLLM_GPU_ARCHES here. +if(VLLM_GPU_LANG STREQUAL "CUDA") + foreach(_ARCH ${CUDA_ARCHS}) + string(REPLACE "." "" _ARCH "${_ARCH}") + list(APPEND VLLM_GPU_ARCHES "${_ARCH}-real") + endforeach() +endif() + # # Build vLLM flash attention from source # @@ -393,8 +507,10 @@ else() FetchContent_Declare( vllm-flash-attn GIT_REPOSITORY https://github.com/vllm-project/flash-attention.git - GIT_TAG 013f0c4fc47e6574060879d9734c1df8c5c273bd + GIT_TAG 5259c586c403a4e4d8bf69973c159b40cc346fb9 GIT_PROGRESS TRUE + # Don't share the vllm-flash-attn build between build types + BINARY_DIR ${CMAKE_BINARY_DIR}/vllm-flash-attn ) endif() diff --git a/CONTRIBUTING.md b/CONTRIBUTING.md index 81a8db2b268b0..b39fd75b5fb70 100644 --- a/CONTRIBUTING.md +++ b/CONTRIBUTING.md @@ -1,30 +1,25 @@ # Contributing to vLLM -Thank you for your interest in contributing to vLLM! -Our community is open to everyone and welcomes all kinds of contributions, no matter how small or large. -There are several ways you can contribute to the project: +Thank you for your interest in contributing to vLLM! Our community is open to everyone and welcomes all kinds of contributions, no matter how small or large. There are several ways you can contribute to the project: - Identify and report any issues or bugs. -- Request or add a new model. +- Request or add support for a new model. - Suggest or implement new features. +- Improve documentation or contribute a how-to guide. -However, remember that contributions aren't just about code. -We believe in the power of community support; thus, answering queries, assisting others, and enhancing the documentation are highly regarded and beneficial contributions. +We also believe in the power of community support; thus, answering queries, offering PR reviews, and assisting others are also highly regarded and beneficial contributions. -Finally, one of the most impactful ways to support us is by raising awareness about vLLM. -Talk about it in your blog posts, highlighting how it's driving your incredible projects. -Express your support on Twitter if vLLM aids you, or simply offer your appreciation by starring our repository. +Finally, one of the most impactful ways to support us is by raising awareness about vLLM. Talk about it in your blog posts and highlight how it's driving your incredible projects. Express your support on social media if you're using vLLM, or simply offer your appreciation by starring our repository! +## License -## Setup for development +See [LICENSE](LICENSE). -### Build from source +## Developing -```bash -pip install -e . # This may take several minutes. -``` +Depending on the kind of development you'd like to do (e.g. Python, CUDA), you can choose to build vLLM with or without compilation. Check out the [building from source](https://docs.vllm.ai/en/latest/getting_started/installation.html#build-from-source) documentation for details. -### Testing +## Testing ```bash pip install -r requirements-dev.txt @@ -36,15 +31,24 @@ mypy # Unit tests pytest tests/ ``` -**Note:** Currently, the repository does not pass the mypy tests. +**Note:** Currently, the repository does not pass the ``mypy`` tests. + +## Contribution Guidelines + +### DCO and Signed-off-by + +When contributing changes to this project, you must agree to the [DCO](DCO). +Commits must include a `Signed-off-by:` header which certifies agreement with +the terms of the [DCO](DCO). +Using `-s` with `git commit` will automatically add this header. -## Contributing Guidelines +### Issues -### Issue Reporting +If you encounter a bug or have a feature request, please [search existing issues](https://github.com/vllm-project/vllm/issues?q=is%3Aissue) first to see if it has already been reported. If not, please [file a new issue](https://github.com/vllm-project/vllm/issues/new/choose), providing as much relevant information as possible. -If you encounter a bug or have a feature request, please check our issues page first to see if someone else has already reported it. -If not, please file a new issue, providing as much relevant information as possible. +> [!IMPORTANT] +> If you discover a security vulnerability, please follow the instructions [here](/SECURITY.md#reporting-a-vulnerability). ### Pull Requests & Code Reviews @@ -53,4 +57,4 @@ Please check the PR checklist in the [PR template](.github/PULL_REQUEST_TEMPLATE ### Thank You Finally, thank you for taking the time to read these guidelines and for your interest in contributing to vLLM. -Your contributions make vLLM a great tool for everyone! +All of your contributions help make vLLM a great tool and community for everyone! diff --git a/DCO b/DCO new file mode 100644 index 0000000000000..49b8cb0549267 --- /dev/null +++ b/DCO @@ -0,0 +1,34 @@ +Developer Certificate of Origin +Version 1.1 + +Copyright (C) 2004, 2006 The Linux Foundation and its contributors. + +Everyone is permitted to copy and distribute verbatim copies of this +license document, but changing it is not allowed. + + +Developer's Certificate of Origin 1.1 + +By making a contribution to this project, I certify that: + +(a) The contribution was created in whole or in part by me and I + have the right to submit it under the open source license + indicated in the file; or + +(b) The contribution is based upon previous work that, to the best + of my knowledge, is covered under an appropriate open source + license and I have the right under that license to submit that + work with modifications, whether created in whole or in part + by me, under the same open source license (unless I am + permitted to submit under a different license), as indicated + in the file; or + +(c) The contribution was provided directly to me by some other + person who certified (a), (b) or (c) and I have not modified + it. + +(d) I understand and agree that this project and the contribution + are public and that a record of the contribution (including all + personal information I submit with it, including my sign-off) is + maintained indefinitely and may be redistributed consistent with + this project or the open source license(s) involved. diff --git a/Dockerfile b/Dockerfile index 872b1bc47054a..343364da2ebf5 100644 --- a/Dockerfile +++ b/Dockerfile @@ -70,16 +70,10 @@ COPY requirements-build.txt requirements-build.txt RUN --mount=type=cache,target=/root/.cache/pip \ python3 -m pip install -r requirements-build.txt -# files and directories related to build wheels -COPY csrc csrc -COPY setup.py setup.py -COPY cmake cmake -COPY CMakeLists.txt CMakeLists.txt -COPY README.md README.md -COPY requirements-common.txt requirements-common.txt -COPY requirements-cuda.txt requirements-cuda.txt -COPY pyproject.toml pyproject.toml -COPY vllm vllm +COPY . . +ARG GIT_REPO_CHECK=0 +RUN --mount=type=bind,source=.git,target=.git \ + if [ "$GIT_REPO_CHECK" != 0 ]; then bash tools/check_repo.sh ; fi # max jobs used by Ninja to build extensions ARG max_jobs=2 @@ -144,7 +138,7 @@ RUN --mount=type=cache,target=/root/.cache/pip \ #################### DEV IMAGE #################### #################### vLLM installation IMAGE #################### # image with vLLM installed -FROM nvidia/cuda:${CUDA_VERSION}-base-ubuntu20.04 AS vllm-base +FROM nvidia/cuda:${CUDA_VERSION}-base-ubuntu22.04 AS vllm-base ARG CUDA_VERSION=12.4.1 ARG PYTHON_VERSION=3.12 WORKDIR /vllm-workspace @@ -182,6 +176,7 @@ RUN --mount=type=bind,from=build,src=/workspace/dist,target=/vllm-workspace/dist RUN --mount=type=cache,target=/root/.cache/pip \ . /etc/environment && \ python3 -m pip install https://github.com/flashinfer-ai/flashinfer/releases/download/v0.1.6/flashinfer-0.1.6+cu121torch2.4-cp${PYTHON_VERSION_STR}-cp${PYTHON_VERSION_STR}-linux_x86_64.whl +COPY examples examples #################### vLLM installation IMAGE #################### @@ -211,7 +206,7 @@ FROM vllm-base AS vllm-openai # install additional dependencies for openai api server RUN --mount=type=cache,target=/root/.cache/pip \ - pip install accelerate hf_transfer 'modelscope!=1.15.0' bitsandbytes>=0.44.0 timm==0.9.10 + pip install accelerate hf_transfer 'modelscope!=1.15.0' 'bitsandbytes>=0.44.0' timm==0.9.10 ENV VLLM_USAGE_SOURCE production-docker-image diff --git a/Dockerfile.cpu b/Dockerfile.cpu index a9d97a3e0bde4..f1a21d6bd13fc 100644 --- a/Dockerfile.cpu +++ b/Dockerfile.cpu @@ -22,29 +22,17 @@ ENV LD_PRELOAD="/usr/lib/x86_64-linux-gnu/libtcmalloc_minimal.so.4:/usr/local/li RUN echo 'ulimit -c 0' >> ~/.bashrc -RUN pip install https://intel-extension-for-pytorch.s3.amazonaws.com/ipex_dev/cpu/intel_extension_for_pytorch-2.4.0%2Bgitfbaa4bc-cp310-cp310-linux_x86_64.whl +RUN pip install intel_extension_for_pytorch==2.4.0 WORKDIR /workspace -ENV PIP_EXTRA_INDEX_URL=https://download.pytorch.org/whl/cpu +ARG PIP_EXTRA_INDEX_URL="https://download.pytorch.org/whl/cpu" +ENV PIP_EXTRA_INDEX_URL=${PIP_EXTRA_INDEX_URL} RUN --mount=type=cache,target=/root/.cache/pip \ --mount=type=bind,src=requirements-build.txt,target=requirements-build.txt \ pip install --upgrade pip && \ pip install -r requirements-build.txt -# install oneDNN -RUN git clone -b rls-v3.5 https://github.com/oneapi-src/oneDNN.git - -RUN --mount=type=cache,target=/root/.cache/ccache \ - cmake -B ./oneDNN/build -S ./oneDNN -G Ninja -DONEDNN_LIBRARY_TYPE=STATIC \ - -DONEDNN_BUILD_DOC=OFF \ - -DONEDNN_BUILD_EXAMPLES=OFF \ - -DONEDNN_BUILD_TESTS=OFF \ - -DONEDNN_BUILD_GRAPH=OFF \ - -DONEDNN_ENABLE_WORKLOAD=INFERENCE \ - -DONEDNN_ENABLE_PRIMITIVE=MATMUL && \ - cmake --build ./oneDNN/build --target install --config Release - FROM cpu-test-1 AS build WORKDIR /workspace/vllm @@ -54,7 +42,10 @@ RUN --mount=type=cache,target=/root/.cache/pip \ --mount=type=bind,src=requirements-cpu.txt,target=requirements-cpu.txt \ pip install -v -r requirements-cpu.txt -COPY ./ ./ +COPY . . +ARG GIT_REPO_CHECK=0 +RUN --mount=type=bind,source=.git,target=.git \ + if [ "$GIT_REPO_CHECK" != 0 ]; then bash tools/check_repo.sh ; fi # Support for building with non-AVX512 vLLM: docker build --build-arg VLLM_CPU_DISABLE_AVX512="true" ... ARG VLLM_CPU_DISABLE_AVX512 diff --git a/Dockerfile.neuron b/Dockerfile.neuron index adae6db87ba87..2143315d2a078 100644 --- a/Dockerfile.neuron +++ b/Dockerfile.neuron @@ -17,7 +17,7 @@ RUN apt-get update && \ # When launching the container, mount the code directory to /app ARG APP_MOUNT=/app VOLUME [ ${APP_MOUNT} ] -WORKDIR ${APP_MOUNT} +WORKDIR ${APP_MOUNT}/vllm RUN python3 -m pip install --upgrade pip RUN python3 -m pip install --no-cache-dir fastapi ninja tokenizers pandas @@ -25,17 +25,17 @@ RUN python3 -m pip install sentencepiece transformers==4.36.2 -U RUN python3 -m pip install transformers-neuronx --extra-index-url=https://pip.repos.neuron.amazonaws.com -U RUN python3 -m pip install --pre neuronx-cc==2.15.* --extra-index-url=https://pip.repos.neuron.amazonaws.com -U -COPY . /app/vllm +COPY . . +ARG GIT_REPO_CHECK=0 +RUN --mount=type=bind,source=.git,target=.git \ + if [ "$GIT_REPO_CHECK" != 0 ]; then bash tools/check_repo.sh ; fi -RUN cd /app/vllm \ - && python3 -m pip install -U \ - cmake>=3.26 ninja packaging setuptools-scm>=8 wheel jinja2 \ +RUN python3 -m pip install -U \ + 'cmake>=3.26' ninja packaging 'setuptools-scm>=8' wheel jinja2 \ -r requirements-neuron.txt ENV VLLM_TARGET_DEVICE neuron RUN --mount=type=bind,source=.git,target=.git \ - cd /app/vllm \ - && pip install --no-build-isolation -v -e . \ - && cd .. + pip install --no-build-isolation -v -e . CMD ["/bin/bash"] diff --git a/Dockerfile.openvino b/Dockerfile.openvino index 95714a3d17188..a05ff452cd36e 100644 --- a/Dockerfile.openvino +++ b/Dockerfile.openvino @@ -9,23 +9,17 @@ RUN apt-get update -y && \ ffmpeg libsm6 libxext6 libgl1 WORKDIR /workspace -# copy requirements -COPY requirements-build.txt /workspace/vllm/ -COPY requirements-common.txt /workspace/vllm/ -COPY requirements-openvino.txt /workspace/vllm/ - -COPY vllm/ /workspace/vllm/vllm -COPY csrc/core /workspace/vllm/csrc/core -COPY cmake/utils.cmake /workspace/vllm/cmake/ -COPY CMakeLists.txt /workspace/vllm/ -COPY setup.py /workspace/vllm/ +COPY . . +ARG GIT_REPO_CHECK=0 +RUN --mount=type=bind,source=.git,target=.git \ + if [ "$GIT_REPO_CHECK" != 0 ]; then bash tools/check_repo.sh ; fi # install build requirements -RUN PIP_EXTRA_INDEX_URL="https://download.pytorch.org/whl/cpu" python3 -m pip install -r /workspace/vllm/requirements-build.txt +RUN PIP_EXTRA_INDEX_URL="https://download.pytorch.org/whl/cpu" python3 -m pip install -r /workspace/requirements-build.txt # build vLLM with OpenVINO backend -RUN PIP_EXTRA_INDEX_URL="https://download.pytorch.org/whl/cpu" VLLM_TARGET_DEVICE="openvino" python3 -m pip install /workspace/vllm/ +RUN PIP_EXTRA_INDEX_URL="https://download.pytorch.org/whl/cpu" VLLM_TARGET_DEVICE="openvino" python3 -m pip install /workspace -COPY examples/ /workspace/vllm/examples -COPY benchmarks/ /workspace/vllm/benchmarks +COPY examples/ /workspace/examples +COPY benchmarks/ /workspace/benchmarks CMD ["/bin/bash"] diff --git a/Dockerfile.ppc64le b/Dockerfile.ppc64le index 1f374b01b9bc0..b19c6ddec7948 100644 --- a/Dockerfile.ppc64le +++ b/Dockerfile.ppc64le @@ -14,11 +14,14 @@ RUN micromamba install -y -n base -c https://ftp.osuosl.org/pub/open-ce/1.11.0-p COPY ./ /workspace/vllm WORKDIR /workspace/vllm +ARG GIT_REPO_CHECK=0 +RUN --mount=type=bind,source=.git,target=.git \ + if [ "$GIT_REPO_CHECK" != 0 ]; then bash tools/check_repo.sh; fi # These packages will be in rocketce eventually RUN --mount=type=cache,target=/root/.cache/pip \ pip install -v --prefer-binary --extra-index-url https://repo.fury.io/mgiessing \ - cmake>=3.26 ninja packaging setuptools-scm>=8 wheel jinja2 \ + 'cmake>=3.26' ninja packaging 'setuptools-scm>=8' wheel jinja2 \ torch==2.3.1 \ -r requirements-cpu.txt \ xformers uvloop==0.20.0 @@ -30,4 +33,4 @@ WORKDIR /workspace/ RUN ln -s /workspace/vllm/tests && ln -s /workspace/vllm/examples && ln -s /workspace/vllm/benchmarks -ENTRYPOINT ["python3", "-m", "vllm.entrypoints.openai.api_server"] +ENTRYPOINT ["/opt/conda/bin/python3", "-m", "vllm.entrypoints.openai.api_server"] diff --git a/Dockerfile.rocm b/Dockerfile.rocm index 496e6bed7c022..8fb79afaebe97 100644 --- a/Dockerfile.rocm +++ b/Dockerfile.rocm @@ -52,7 +52,7 @@ RUN --mount=type=cache,target=/root/.cache/pip \ python3 -m pip uninstall -y torch torchvision \ && python3 -m pip install --pre \ torch==2.6.0.dev20240918 \ - setuptools-scm>=8 \ + 'setuptools-scm>=8' \ torchvision==0.20.0.dev20240918 \ --extra-index-url https://download.pytorch.org/whl/nightly/rocm6.2;; \ *) ;; esac @@ -117,6 +117,11 @@ RUN --mount=type=cache,target=${CCACHE_DIR} \ FROM base AS final # Import the vLLM development directory from the build context COPY . . +ARG GIT_REPO_CHECK=0 +RUN --mount=type=bind,source=.git,target=.git \ + if [ "$GIT_REPO_CHECK" != 0 ]; then bash tools/check_repo.sh ; fi + +RUN python3 -m pip install --upgrade pip # Package upgrades for useful functionality or to avoid dependency issues RUN --mount=type=cache,target=/root/.cache/pip \ diff --git a/Dockerfile.tpu b/Dockerfile.tpu index d8f1a42c45177..b43442e4c0af1 100644 --- a/Dockerfile.tpu +++ b/Dockerfile.tpu @@ -1,8 +1,8 @@ -ARG NIGHTLY_DATE="20240828" +ARG NIGHTLY_DATE="20241017" ARG BASE_IMAGE="us-central1-docker.pkg.dev/tpu-pytorch-releases/docker/xla:nightly_3.10_tpuvm_$NIGHTLY_DATE" FROM $BASE_IMAGE -WORKDIR /workspace +WORKDIR /workspace/vllm # Install some basic utilities RUN apt-get update && apt-get install -y \ @@ -16,14 +16,17 @@ RUN --mount=type=cache,target=/root/.cache/pip \ python3 -m pip install torch_xla[pallas] -f https://storage.googleapis.com/jax-releases/jax_nightly_releases.html -f https://storage.googleapis.com/jax-releases/jaxlib_nightly_releases.html # Build vLLM. -COPY . /workspace/vllm +COPY . . +ARG GIT_REPO_CHECK=0 +RUN --mount=type=bind,source=.git,target=.git \ + if [ "$GIT_REPO_CHECK" != 0 ]; then bash tools/check_repo.sh; fi + ENV VLLM_TARGET_DEVICE="tpu" RUN --mount=type=cache,target=/root/.cache/pip \ --mount=type=bind,source=.git,target=.git \ - cd /workspace/vllm && \ python3 -m pip install \ - cmake>=3.26 ninja packaging setuptools-scm>=8 wheel jinja2 \ + 'cmake>=3.26' ninja packaging 'setuptools-scm>=8' wheel jinja2 \ -r requirements-tpu.txt -RUN cd /workspace/vllm && python3 setup.py develop +RUN python3 setup.py develop CMD ["/bin/bash"] diff --git a/Dockerfile.xpu b/Dockerfile.xpu index 83db341556eaf..0ecb46df6256c 100644 --- a/Dockerfile.xpu +++ b/Dockerfile.xpu @@ -33,7 +33,10 @@ RUN --mount=type=cache,target=/root/.cache/pip \ --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ \ -r requirements-xpu.txt -COPY ./ /workspace/vllm +COPY . . +ARG GIT_REPO_CHECK +RUN --mount=type=bind,source=.git,target=.git \ + if [ "$GIT_REPO_CHECK" != 0 ]; then bash tools/check_repo.sh; fi ENV VLLM_TARGET_DEVICE=xpu diff --git a/README.md b/README.md index 53749cb36b972..b75bfc5c699a7 100644 --- a/README.md +++ b/README.md @@ -10,22 +10,23 @@ Easy, fast, and cheap LLM serving for everyone

-| Documentation | Blog | Paper | Discord | Twitter/X | - +| Documentation | Blog | Paper | Discord | Twitter/X | Developer Slack |

- --- -**vLLM, AMD, Anyscale Meet & Greet at [Ray Summit 2024](http://raysummit.anyscale.com) (Monday, Sept 30th, 5-7pm PT) at Marriott Marquis San Francisco** +**vLLM x Snowflake Meetup (Wednesday, November 13th, 5:30-8PM PT) at Snowflake HQ, San Mateo** -We are excited to announce our special vLLM event in collaboration with AMD and Anyscale. -Join us to learn more about recent advancements of vLLM on MI300X. -Register [here](https://lu.ma/db5ld9n5) and be a part of the event! +We are excited to announce the last in-person vLLM meetup of the year! +Join the vLLM developers and engineers from Snowflake AI Research to chat about the latest LLM inference optimizations and your 2025 vLLM wishlist! +Register [here](https://lu.ma/h0qvrajz) and be a part of the event! --- + *Latest News* 🔥 +- [2024/10] We have just created a developer slack ([slack.vllm.ai](https://slack.vllm.ai)) focusing on coordinating contributions and discussing features. Please feel free to join us there! +- [2024/10] Ray Summit 2024 held a special track for vLLM! Please find the opening talk slides from the vLLM team [here](https://docs.google.com/presentation/d/1B_KQxpHBTRa_mDF-tR6i8rWdOU5QoTZNcEg2MKZxEHM/edit?usp=sharing). Learn more from the [talks](https://raysummit.anyscale.com/flow/anyscale/raysummit2024/landing/page/sessioncatalog?tab.day=20241001&search.sessiontracks=1719251906298001uzJ2) from other vLLM contributors and users! - [2024/09] We hosted [the sixth vLLM meetup](https://lu.ma/87q3nvnh) with NVIDIA! Please find the meetup slides [here](https://docs.google.com/presentation/d/1wrLGwytQfaOTd5wCGSPNhoaW3nq0E-9wqyP7ny93xRs/edit?usp=sharing). - [2024/07] We hosted [the fifth vLLM meetup](https://lu.ma/lp0gyjqr) with AWS! Please find the meetup slides [here](https://docs.google.com/presentation/d/1RgUD8aCfcHocghoP3zmXzck9vX3RCI9yfUAB2Bbcl4Y/edit?usp=sharing). - [2024/07] In partnership with Meta, vLLM officially supports Llama 3.1 with FP8 quantization and pipeline parallelism! Please check out our blog post [here](https://blog.vllm.ai/2024/07/23/llama31.html). @@ -51,7 +52,7 @@ vLLM is fast with: - Speculative decoding - Chunked prefill -**Performance benchmark**: We include a [performance benchmark](https://buildkite.com/vllm/performance-benchmark/builds/4068) that compares the performance of vLLM against other LLM serving engines ([TensorRT-LLM](https://github.com/NVIDIA/TensorRT-LLM), [text-generation-inference](https://github.com/huggingface/text-generation-inference) and [lmdeploy](https://github.com/InternLM/lmdeploy)). +**Performance benchmark**: We include a performance benchmark at the end of [our blog post](https://blog.vllm.ai/2024/09/05/perf-update.html). It compares the performance of vLLM against other LLM serving engines ([TensorRT-LLM](https://github.com/NVIDIA/TensorRT-LLM), [SGLang](https://github.com/sgl-project/sglang) and [LMDeploy](https://github.com/InternLM/lmdeploy)). The implementation is under [nightly-benchmarks folder](.buildkite/nightly-benchmarks/) and you can [reproduce](https://github.com/vllm-project/vllm/issues/8176) this benchmark using our one-click runnable script. vLLM is flexible and easy to use with: @@ -136,5 +137,6 @@ If you use vLLM for your research, please cite our [paper](https://arxiv.org/abs * For technical questions and feature requests, please use Github issues or discussions. * For discussing with fellow users, please use Discord. +* For coordinating contributions and development, please use Slack. * For security disclosures, please use Github's security advisory feature. -* For collaborations and partnerships, please contact us at vllm-questions AT lists.berkeley.edu. \ No newline at end of file +* For collaborations and partnerships, please contact us at vllm-questions AT lists.berkeley.edu. diff --git a/SECURITY.md b/SECURITY.md index d9a392158472d..ad3f1f16ab560 100644 --- a/SECURITY.md +++ b/SECURITY.md @@ -2,11 +2,10 @@ ## Reporting a Vulnerability -If you believe you have found a security vulnerability in vLLM, we encourage you to let us know right away. -We will investigate all legitimate reports and do our best to quickly fix the problem. +If you believe you have found a security vulnerability in vLLM, we encourage you to let us know right away. We will investigate all legitimate reports and do our best to quickly fix the problem. -Please report security issues using https://github.com/vllm-project/vllm/security/advisories/new +Please report security issues privately using [the vulnerability submission form](https://github.com/vllm-project/vllm/security/advisories/new). --- -Please see PyTorch Security for more information how to securely interact with models: https://github.com/pytorch/pytorch/blob/main/SECURITY.md -This document mostly references the recommendation from PyTorch, thank you! + +Please see [PyTorch's Security Policy](https://github.com/pytorch/pytorch/blob/main/SECURITY.md) for more information and recommendations on how to securely interact with models. diff --git a/benchmarks/backend_request_func.py b/benchmarks/backend_request_func.py index 3def4a6d67acf..0a903877f000d 100644 --- a/benchmarks/backend_request_func.py +++ b/benchmarks/backend_request_func.py @@ -23,9 +23,9 @@ class RequestFuncInput: output_len: int model: str best_of: int = 1 - use_beam_search: bool = False logprobs: Optional[int] = None multi_modal_content: Optional[dict] = None + ignore_eos: bool = False @dataclass @@ -48,13 +48,13 @@ async def async_request_tgi( assert api_url.endswith("generate_stream") async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session: - assert not request_func_input.use_beam_search params = { "best_of": request_func_input.best_of, "max_new_tokens": request_func_input.output_len, "do_sample": True, "temperature": 0.01, # TGI does not accept 0.0 temperature. "top_p": 0.99, # TGI does not accept 1.0 top_p. + # TGI does not accept ignore_eos flag. } payload = { "inputs": request_func_input.prompt, @@ -119,7 +119,6 @@ async def async_request_trt_llm( assert api_url.endswith("generate_stream") async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session: - assert not request_func_input.use_beam_search assert request_func_input.best_of == 1 payload = { "accumulate_tokens": True, @@ -129,6 +128,8 @@ async def async_request_trt_llm( "max_tokens": request_func_input.output_len, "stream": True, } + if request_func_input.ignore_eos: + payload["min_length"] = request_func_input.output_len output = RequestFuncOutput() output.prompt_len = request_func_input.prompt_len @@ -183,7 +184,6 @@ async def async_request_deepspeed_mii( ) -> RequestFuncOutput: async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session: assert request_func_input.best_of == 1 - assert not request_func_input.use_beam_search payload = { "prompt": request_func_input.prompt, @@ -231,7 +231,6 @@ async def async_request_openai_completions( ), "OpenAI Completions API URL must end with 'completions' or 'profile'." async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session: - assert not request_func_input.use_beam_search payload = { "model": request_func_input.model, "prompt": request_func_input.prompt, @@ -240,6 +239,7 @@ async def async_request_openai_completions( "max_tokens": request_func_input.output_len, "logprobs": request_func_input.logprobs, "stream": True, + "ignore_eos": request_func_input.ignore_eos, } headers = { "Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}" @@ -312,7 +312,6 @@ async def async_request_openai_chat_completions( ), "OpenAI Chat Completions API URL must end with 'chat/completions'." async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session: - assert not request_func_input.use_beam_search content = [{"type": "text", "text": request_func_input.prompt}] if request_func_input.multi_modal_content: content.append(request_func_input.multi_modal_content) @@ -325,8 +324,9 @@ async def async_request_openai_chat_completions( }, ], "temperature": 0.0, - "max_tokens": request_func_input.output_len, + "max_completion_tokens": request_func_input.output_len, "stream": True, + "ignore_eos": request_func_input.ignore_eos, } headers = { "Content-Type": "application/json", @@ -430,4 +430,5 @@ def get_tokenizer( "openai-chat": async_request_openai_chat_completions, "tensorrt-llm": async_request_trt_llm, "scalellm": async_request_openai_completions, + "sglang": async_request_openai_completions, } diff --git a/benchmarks/benchmark_latency.py b/benchmarks/benchmark_latency.py index eadf994cacd34..0a14aedd5feba 100644 --- a/benchmarks/benchmark_latency.py +++ b/benchmarks/benchmark_latency.py @@ -1,5 +1,6 @@ """Benchmark the latency of processing a single batch of requests.""" import argparse +import dataclasses import json import time from pathlib import Path @@ -10,50 +11,24 @@ from tqdm import tqdm from vllm import LLM, SamplingParams -from vllm.engine.arg_utils import DEVICE_OPTIONS, EngineArgs +from vllm.engine.arg_utils import EngineArgs from vllm.inputs import PromptType -from vllm.model_executor.layers.quantization import QUANTIZATION_METHODS from vllm.utils import FlexibleArgumentParser def main(args: argparse.Namespace): print(args) + engine_args = EngineArgs.from_cli_args(args) + # NOTE(woosuk): If the request cannot be processed in a single batch, # the engine will automatically process the request in multiple batches. - llm = LLM( - model=args.model, - speculative_model=args.speculative_model, - num_speculative_tokens=args.num_speculative_tokens, - speculative_draft_tensor_parallel_size=\ - args.speculative_draft_tensor_parallel_size, - tokenizer=args.tokenizer, - quantization=args.quantization, - tensor_parallel_size=args.tensor_parallel_size, - trust_remote_code=args.trust_remote_code, - dtype=args.dtype, - max_model_len=args.max_model_len, - enforce_eager=args.enforce_eager, - kv_cache_dtype=args.kv_cache_dtype, - quantization_param_path=args.quantization_param_path, - device=args.device, - ray_workers_use_nsight=args.ray_workers_use_nsight, - use_v2_block_manager=args.use_v2_block_manager, - enable_chunked_prefill=args.enable_chunked_prefill, - download_dir=args.download_dir, - block_size=args.block_size, - gpu_memory_utilization=args.gpu_memory_utilization, - load_format=args.load_format, - distributed_executor_backend=args.distributed_executor_backend, - otlp_traces_endpoint=args.otlp_traces_endpoint, - enable_prefix_caching=args.enable_prefix_caching, - ) + llm = LLM(**dataclasses.asdict(engine_args)) sampling_params = SamplingParams( n=args.n, - temperature=0.0 if args.use_beam_search else 1.0, + temperature=1.0, top_p=1.0, - use_beam_search=args.use_beam_search, ignore_eos=True, max_tokens=args.output_len, ) @@ -127,19 +102,6 @@ def run_to_completion(profile_dir: Optional[str] = None): parser = FlexibleArgumentParser( description='Benchmark the latency of processing a single batch of ' 'requests till completion.') - parser.add_argument('--model', type=str, default='facebook/opt-125m') - parser.add_argument('--speculative-model', type=str, default=None) - parser.add_argument('--num-speculative-tokens', type=int, default=None) - parser.add_argument('--speculative-draft-tensor-parallel-size', - '-spec-draft-tp', - type=int, - default=None) - parser.add_argument('--tokenizer', type=str, default=None) - parser.add_argument('--quantization', - '-q', - choices=[*QUANTIZATION_METHODS, None], - default=None) - parser.add_argument('--tensor-parallel-size', '-tp', type=int, default=1) parser.add_argument('--input-len', type=int, default=32) parser.add_argument('--output-len', type=int, default=128) parser.add_argument('--batch-size', type=int, default=8) @@ -156,45 +118,6 @@ def run_to_completion(profile_dir: Optional[str] = None): type=int, default=30, help='Number of iterations to run.') - parser.add_argument('--trust-remote-code', - action='store_true', - help='trust remote code from huggingface') - parser.add_argument( - '--max-model-len', - type=int, - default=None, - help='Maximum length of a sequence (including prompt and output). ' - 'If None, will be derived from the model.') - parser.add_argument( - '--dtype', - type=str, - default='auto', - choices=['auto', 'half', 'float16', 'bfloat16', 'float', 'float32'], - help='data type for model weights and activations. ' - 'The "auto" option will use FP16 precision ' - 'for FP32 and FP16 models, and BF16 precision ' - 'for BF16 models.') - parser.add_argument('--enforce-eager', - action='store_true', - help='enforce eager mode and disable CUDA graph') - parser.add_argument( - '--kv-cache-dtype', - type=str, - choices=['auto', 'fp8', 'fp8_e5m2', 'fp8_e4m3'], - default="auto", - help='Data type for kv cache storage. If "auto", will use model ' - 'data type. CUDA 11.8+ supports fp8 (=fp8_e4m3) and fp8_e5m2. ' - 'ROCm (AMD GPU) supports fp8 (=fp8_e4m3)') - parser.add_argument( - '--quantization-param-path', - type=str, - default=None, - help='Path to the JSON file containing the KV cache scaling factors. ' - 'This should generally be supplied, when KV cache dtype is FP8. ' - 'Otherwise, KV cache scaling factors default to 1.0, which may cause ' - 'accuracy issues. FP8_E5M2 (without scaling) is only supported on ' - 'cuda version greater than 11.8. On ROCm (AMD GPU), FP8_E4M3 is ' - 'instead supported for common inference criteria.') parser.add_argument( '--profile', action='store_true', @@ -205,79 +128,12 @@ def run_to_completion(profile_dir: Optional[str] = None): default=None, help=('path to save the pytorch profiler output. Can be visualized ' 'with ui.perfetto.dev or Tensorboard.')) - parser.add_argument("--device", - type=str, - default="auto", - choices=DEVICE_OPTIONS, - help='device type for vLLM execution') - parser.add_argument('--block-size', - type=int, - default=16, - help='block size of key/value cache') - parser.add_argument( - '--enable-chunked-prefill', - action='store_true', - help='If True, the prefill requests can be chunked based on the ' - 'max_num_batched_tokens') - parser.add_argument("--enable-prefix-caching", - action='store_true', - help="Enable automatic prefix caching") - parser.add_argument('--use-v2-block-manager', action='store_true') - parser.add_argument( - "--ray-workers-use-nsight", - action='store_true', - help="If specified, use nsight to profile ray workers", - ) - parser.add_argument('--download-dir', - type=str, - default=None, - help='directory to download and load the weights, ' - 'default to the default cache dir of huggingface') parser.add_argument( '--output-json', type=str, default=None, help='Path to save the latency results in JSON format.') - parser.add_argument('--gpu-memory-utilization', - type=float, - default=0.9, - help='the fraction of GPU memory to be used for ' - 'the model executor, which can range from 0 to 1.' - 'If unspecified, will use the default value of 0.9.') - parser.add_argument( - '--load-format', - type=str, - default=EngineArgs.load_format, - choices=[ - 'auto', 'pt', 'safetensors', 'npcache', 'dummy', 'tensorizer', - 'bitsandbytes' - ], - help='The format of the model weights to load.\n\n' - '* "auto" will try to load the weights in the safetensors format ' - 'and fall back to the pytorch bin format if safetensors format ' - 'is not available.\n' - '* "pt" will load the weights in the pytorch bin format.\n' - '* "safetensors" will load the weights in the safetensors format.\n' - '* "npcache" will load the weights in pytorch format and store ' - 'a numpy cache to speed up the loading.\n' - '* "dummy" will initialize the weights with random values, ' - 'which is mainly for profiling.\n' - '* "tensorizer" will load the weights using tensorizer from ' - 'CoreWeave. See the Tensorize vLLM Model script in the Examples' - 'section for more information.\n' - '* "bitsandbytes" will load the weights using bitsandbytes ' - 'quantization.\n') - parser.add_argument( - '--distributed-executor-backend', - choices=['ray', 'mp'], - default=None, - help='Backend to use for distributed serving. When more than 1 GPU ' - 'is used, will be automatically set to "ray" if installed ' - 'or "mp" (multiprocessing) otherwise.') - parser.add_argument( - '--otlp-traces-endpoint', - type=str, - default=None, - help='Target URL to which OpenTelemetry traces will be sent.') + + parser = EngineArgs.add_cli_args(parser) args = parser.parse_args() main(args) diff --git a/benchmarks/benchmark_prefix_caching.py b/benchmarks/benchmark_prefix_caching.py index 3e90fdfb78e10..1aac029992dbf 100644 --- a/benchmarks/benchmark_prefix_caching.py +++ b/benchmarks/benchmark_prefix_caching.py @@ -25,6 +25,7 @@ --input-length-range 128:256 """ +import dataclasses import json import random import time @@ -33,6 +34,7 @@ from transformers import PreTrainedTokenizerBase from vllm import LLM, SamplingParams +from vllm.engine.arg_utils import EngineArgs from vllm.utils import FlexibleArgumentParser try: @@ -113,7 +115,7 @@ def repeat_and_sort_requests(requests: List[Tuple[str, int, int]], def main(args): tokenizer = get_tokenizer(args.model, trust_remote_code=True) input_length_range = tuple(map(int, args.input_length_range.split(':'))) - + random.seed(args.seed) if args.dataset_path is not None: print(f"Start to sample {args.num_prompts} prompts" "from {args.dataset_path}") @@ -129,13 +131,9 @@ def main(args): filtered_datasets = [(PROMPT, prompt_len, args.output_len) ] * args.num_prompts - llm = LLM(model=args.model, - tokenizer_mode='auto', - trust_remote_code=True, - enforce_eager=True, - use_v2_block_manager=args.use_v2_block_manager, - tensor_parallel_size=args.tensor_parallel_size, - enable_prefix_caching=args.enable_prefix_caching) + engine_args = EngineArgs.from_cli_args(args) + + llm = LLM(**dataclasses.asdict(engine_args)) sampling_params = SamplingParams(temperature=0, max_tokens=args.output_len) @@ -163,21 +161,11 @@ def main(args): parser = FlexibleArgumentParser( description= 'Benchmark the performance with or without automatic prefix caching.') - parser.add_argument('--model', - type=str, - default='baichuan-inc/Baichuan2-13B-Chat') parser.add_argument("--dataset-path", type=str, default=None, help="Path to the dataset.") - parser.add_argument('--tensor-parallel-size', '-tp', type=int, default=1) parser.add_argument('--output-len', type=int, default=10) - parser.add_argument('--enable-prefix-caching', - action='store_true', - help='enable prefix caching') - parser.add_argument('--use-v2-block-manager', - action='store_true', - help='Use BlockSpaceMangerV2') parser.add_argument('--num-prompts', type=int, default=1, @@ -194,5 +182,7 @@ def main(args): default='128:256', help='Range of input lengths for sampling prompts,' 'specified as "min:max" (e.g., "128:256").') + + parser = EngineArgs.add_cli_args(parser) args = parser.parse_args() main(args) diff --git a/benchmarks/benchmark_prioritization.py b/benchmarks/benchmark_prioritization.py index 0ba29fabca59b..e0c9e6a6db502 100644 --- a/benchmarks/benchmark_prioritization.py +++ b/benchmarks/benchmark_prioritization.py @@ -1,5 +1,6 @@ """Benchmark offline prioritization.""" import argparse +import dataclasses import json import random import time @@ -7,7 +8,8 @@ from transformers import AutoTokenizer, PreTrainedTokenizerBase -from vllm.model_executor.layers.quantization import QUANTIZATION_METHODS +from vllm.engine.arg_utils import EngineArgs +from vllm.utils import FlexibleArgumentParser def sample_requests( @@ -62,47 +64,11 @@ def sample_requests( def run_vllm( requests: List[Tuple[str, int, int]], - model: str, - tokenizer: str, - quantization: Optional[str], - tensor_parallel_size: int, - seed: int, n: int, - use_beam_search: bool, - trust_remote_code: bool, - dtype: str, - max_model_len: Optional[int], - enforce_eager: bool, - kv_cache_dtype: str, - quantization_param_path: Optional[str], - device: str, - enable_prefix_caching: bool, - enable_chunked_prefill: bool, - max_num_batched_tokens: int, - gpu_memory_utilization: float = 0.9, - download_dir: Optional[str] = None, + engine_args: EngineArgs, ) -> float: from vllm import LLM, SamplingParams - llm = LLM( - model=model, - tokenizer=tokenizer, - quantization=quantization, - tensor_parallel_size=tensor_parallel_size, - seed=seed, - trust_remote_code=trust_remote_code, - dtype=dtype, - max_model_len=max_model_len, - gpu_memory_utilization=gpu_memory_utilization, - enforce_eager=enforce_eager, - kv_cache_dtype=kv_cache_dtype, - quantization_param_path=quantization_param_path, - device=device, - enable_prefix_caching=enable_prefix_caching, - download_dir=download_dir, - enable_chunked_prefill=enable_chunked_prefill, - max_num_batched_tokens=max_num_batched_tokens, - disable_log_stats=False, - ) + llm = LLM(**dataclasses.asdict(engine_args)) # Add the requests to the engine. prompts = [] @@ -114,9 +80,8 @@ def run_vllm( sampling_params.append( SamplingParams( n=n, - temperature=0.0 if use_beam_search else 1.0, + temperature=1.0, top_p=1.0, - use_beam_search=use_beam_search, ignore_eos=True, max_tokens=output_len, )) @@ -144,15 +109,8 @@ def main(args: argparse.Namespace): args.output_len) if args.backend == "vllm": - elapsed_time = run_vllm( - requests, args.model, args.tokenizer, args.quantization, - args.tensor_parallel_size, args.seed, args.n, args.use_beam_search, - args.trust_remote_code, args.dtype, args.max_model_len, - args.enforce_eager, args.kv_cache_dtype, - args.quantization_param_path, args.device, - args.enable_prefix_caching, args.enable_chunked_prefill, - args.max_num_batched_tokens, args.gpu_memory_utilization, - args.download_dir) + elapsed_time = run_vllm(requests, args.n, + EngineArgs.from_cli_args(args)) else: raise ValueError(f"Unknown backend: {args.backend}") total_num_tokens = sum(prompt_len + output_len @@ -174,7 +132,7 @@ def main(args: argparse.Namespace): if __name__ == "__main__": - parser = argparse.ArgumentParser(description="Benchmark the throughput.") + parser = FlexibleArgumentParser(description="Benchmark the throughput.") parser.add_argument("--backend", type=str, choices=["vllm", "hf", "mii"], @@ -192,97 +150,21 @@ def main(args: argparse.Namespace): default=None, help="Output length for each request. Overrides the " "output length from the dataset.") - parser.add_argument("--model", type=str, default="facebook/opt-125m") - parser.add_argument("--tokenizer", type=str, default=None) - parser.add_argument('--quantization', - '-q', - choices=[*QUANTIZATION_METHODS, None], - default=None) - parser.add_argument("--tensor-parallel-size", "-tp", type=int, default=1) parser.add_argument("--n", type=int, default=1, help="Number of generated sequences per prompt.") - parser.add_argument("--use-beam-search", action="store_true") parser.add_argument("--num-prompts", type=int, default=200, help="Number of prompts to process.") - parser.add_argument("--seed", type=int, default=0) - parser.add_argument('--trust-remote-code', - action='store_true', - help='trust remote code from huggingface') - parser.add_argument( - '--max-model-len', - type=int, - default=None, - help='Maximum length of a sequence (including prompt and output). ' - 'If None, will be derived from the model.') - parser.add_argument( - '--dtype', - type=str, - default='auto', - choices=['auto', 'half', 'float16', 'bfloat16', 'float', 'float32'], - help='data type for model weights and activations. ' - 'The "auto" option will use FP16 precision ' - 'for FP32 and FP16 models, and BF16 precision ' - 'for BF16 models.') - parser.add_argument('--gpu-memory-utilization', - type=float, - default=0.9, - help='the fraction of GPU memory to be used for ' - 'the model executor, which can range from 0 to 1.' - 'If unspecified, will use the default value of 0.9.') - parser.add_argument("--enforce-eager", - action="store_true", - help="enforce eager execution") - parser.add_argument( - '--kv-cache-dtype', - type=str, - choices=['auto', 'fp8', 'fp8_e5m2', 'fp8_e4m3'], - default="auto", - help='Data type for kv cache storage. If "auto", will use model ' - 'data type. CUDA 11.8+ supports fp8 (=fp8_e4m3) and fp8_e5m2. ' - 'ROCm (AMD GPU) supports fp8 (=fp8_e4m3)') - parser.add_argument( - '--quantization-param-path', - type=str, - default=None, - help='Path to the JSON file containing the KV cache scaling factors. ' - 'This should generally be supplied, when KV cache dtype is FP8. ' - 'Otherwise, KV cache scaling factors default to 1.0, which may cause ' - 'accuracy issues. FP8_E5M2 (without scaling) is only supported on ' - 'cuda version greater than 11.8. On ROCm (AMD GPU), FP8_E4M3 is ' - 'instead supported for common inference criteria.') - parser.add_argument( - "--device", - type=str, - default="cuda", - choices=["cuda", "cpu"], - help='device type for vLLM execution, supporting CUDA and CPU.') - parser.add_argument( - "--enable-prefix-caching", - action='store_true', - help="enable automatic prefix caching for vLLM backend.") - parser.add_argument("--enable-chunked-prefill", - action='store_true', - help="enable chunked prefill for vLLM backend.") - parser.add_argument('--max-num-batched-tokens', - type=int, - default=None, - help='maximum number of batched tokens per ' - 'iteration') - parser.add_argument('--download-dir', - type=str, - default=None, - help='directory to download and load the weights, ' - 'default to the default cache dir of huggingface') parser.add_argument( '--output-json', type=str, default=None, help='Path to save the throughput results in JSON format.') + parser = EngineArgs.add_cli_args(parser) args = parser.parse_args() if args.tokenizer is None: args.tokenizer = args.model diff --git a/benchmarks/benchmark_serving.py b/benchmarks/benchmark_serving.py index 996a92d2a8b3d..0d205014b15bf 100644 --- a/benchmarks/benchmark_serving.py +++ b/benchmarks/benchmark_serving.py @@ -53,6 +53,8 @@ except ImportError: from argparse import ArgumentParser as FlexibleArgumentParser +MILLISECONDS_TO_SECONDS_CONVERSION = 1000 + @dataclass class BenchmarkMetrics: @@ -60,6 +62,7 @@ class BenchmarkMetrics: total_input: int total_output: int request_throughput: float + request_goodput: float output_throughput: float total_token_throughput: float mean_ttft_ms: float @@ -90,7 +93,7 @@ def sample_sharegpt_requests( fixed_output_len: Optional[int] = None, ) -> List[Tuple[str, int, int, None]]: # Load the dataset. - with open(dataset_path) as f: + with open(dataset_path, encoding='utf-8') as f: dataset = json.load(f) # Filter out the conversations with less than 2 turns. dataset = [data for data in dataset if len(data["conversations"]) >= 2] @@ -139,7 +142,7 @@ def sample_sonnet_requests( ), "'args.sonnet-input-len' must be greater than 'args.prefix-input-len'." # Load the dataset. - with open(dataset_path) as f: + with open(dataset_path, encoding='utf-8') as f: poem_lines = f.readlines() # Tokenize the poem lines. @@ -176,9 +179,9 @@ def sample_sonnet_requests( # Sample the rest of lines per request. sampled_requests: List[Tuple[str, int, int]] = [] for _ in range(num_requests): - sampled_lines = "".join( - prefix_lines + - random.sample(poem_lines, num_input_lines - num_prefix_lines)) + num_lines_needed = num_input_lines - num_prefix_lines + sampled_lines = "".join(prefix_lines + + random.choices(poem_lines, k=num_lines_needed)) prompt = f"{base_prompt}{sampled_lines}" message = [ @@ -202,6 +205,7 @@ def sample_hf_requests( dataset_split: str, num_requests: int, tokenizer: PreTrainedTokenizerBase, + random_seed: int, fixed_output_len: Optional[int] = None, ) -> List[Tuple[str, str, int, Optional[Dict[str, Collection[str]]]]]: dataset = load_dataset(dataset_path, @@ -210,8 +214,8 @@ def sample_hf_requests( streaming=True) assert "conversations" in dataset.features, ( "HF Dataset must have 'conversations' column.") - filtered_dataset = dataset.shuffle().filter( - lambda x: len(x["conversations"]) >= 2) + filter_func = lambda x: len(x["conversations"]) >= 2 + filtered_dataset = dataset.shuffle(seed=random_seed).filter(filter_func) sampled_requests: List[Tuple[str, int, int, Dict[str, Collection[str]]]] = [] for data in filtered_dataset: @@ -315,12 +319,15 @@ def calculate_metrics( tokenizer: PreTrainedTokenizerBase, selected_percentile_metrics: List[str], selected_percentiles: List[float], + gootput_config_dict: Dict[str, float], ) -> Tuple[BenchmarkMetrics, List[int]]: actual_output_lens: List[int] = [] total_input = 0 completed = 0 + good_completed = 0 itls: List[float] = [] tpots: List[float] = [] + all_tpots: List[float] = [] ttfts: List[float] = [] e2els: List[float] = [] for i in range(len(outputs)): @@ -334,9 +341,13 @@ def calculate_metrics( add_special_tokens=False).input_ids) actual_output_lens.append(output_len) total_input += input_requests[i][1] + tpot = 0 if output_len > 1: - tpots.append( - (outputs[i].latency - outputs[i].ttft) / (output_len - 1)) + tpot = (outputs[i].latency - outputs[i].ttft) / (output_len - + 1) + tpots.append(tpot) + # Note: if output_len <= 1, we regard tpot as 0 for goodput + all_tpots.append(tpot) itls += outputs[i].itl ttfts.append(outputs[i].ttft) e2els.append(outputs[i].latency) @@ -344,6 +355,28 @@ def calculate_metrics( else: actual_output_lens.append(0) + if gootput_config_dict: + valid_metrics = [] + slo_values = [] + + if "ttft" in gootput_config_dict: + valid_metrics.append(ttfts) + slo_values.append(gootput_config_dict["ttft"] / + MILLISECONDS_TO_SECONDS_CONVERSION) + if "tpot" in gootput_config_dict: + valid_metrics.append(all_tpots) + slo_values.append(gootput_config_dict["tpot"] / + MILLISECONDS_TO_SECONDS_CONVERSION) + if "e2el" in gootput_config_dict: + valid_metrics.append(e2els) + slo_values.append(gootput_config_dict["e2el"] / + MILLISECONDS_TO_SECONDS_CONVERSION) + + for req_metric in zip(*valid_metrics): + is_good_req = all([s >= r for s, r in zip(slo_values, req_metric)]) + if is_good_req: + good_completed += 1 + if completed == 0: warnings.warn( "All requests failed. This is likely due to a misconfiguration " @@ -354,6 +387,7 @@ def calculate_metrics( total_input=total_input, total_output=sum(actual_output_lens), request_throughput=completed / dur_s, + request_goodput=good_completed / dur_s, output_throughput=sum(actual_output_lens) / dur_s, total_token_throughput=(total_input + sum(actual_output_lens)) / dur_s, mean_ttft_ms=np.mean(ttfts or 0) * @@ -391,12 +425,14 @@ async def benchmark( input_requests: List[Tuple[str, int, int]], logprobs: Optional[int], best_of: int, - use_beam_search: bool, request_rate: float, disable_tqdm: bool, profile: bool, selected_percentile_metrics: List[str], selected_percentiles: List[str], + ignore_eos: bool, + gootput_config_dict: Dict[str, float], + max_concurrency: Optional[int], ): if backend in ASYNC_REQUEST_FUNCS: request_func = ASYNC_REQUEST_FUNCS[backend] @@ -418,8 +454,8 @@ async def benchmark( output_len=test_output_len, logprobs=logprobs, best_of=best_of, - use_beam_search=use_beam_search, multi_modal_content=test_mm_content, + ignore_eos=ignore_eos, ) test_output = await request_func(request_func_input=test_input) if not test_output.success: @@ -431,44 +467,56 @@ async def benchmark( if profile: print("Starting profiler...") - profile_input = RequestFuncInput( - model=model_id, - prompt=test_prompt, - api_url=base_url + "/start_profile", - prompt_len=test_prompt_len, - output_len=test_output_len, - logprobs=logprobs, - best_of=best_of, - use_beam_search=use_beam_search, - multi_modal_content=test_mm_content, - ) + profile_input = RequestFuncInput(model=model_id, + prompt=test_prompt, + api_url=base_url + "/start_profile", + prompt_len=test_prompt_len, + output_len=test_output_len, + logprobs=logprobs, + best_of=best_of, + multi_modal_content=test_mm_content, + ignore_eos=ignore_eos) profile_output = await request_func(request_func_input=profile_input) if profile_output.success: print("Profiler started") print(f"Traffic request rate: {request_rate}") + print(f"Maximum request concurrency: {max_concurrency}") pbar = None if disable_tqdm else tqdm(total=len(input_requests)) + # This can be used once the minimum Python version is 3.10 or higher, + # and it will simplify the code in limited_request_func. + # semaphore = (asyncio.Semaphore(max_concurrency) + # if max_concurrency else contextlib.nullcontext()) + semaphore = (asyncio.Semaphore(max_concurrency) + if max_concurrency else None) + + async def limited_request_func(request_func_input, pbar): + if semaphore is None: + return await request_func(request_func_input=request_func_input, + pbar=pbar) + async with semaphore: + return await request_func(request_func_input=request_func_input, + pbar=pbar) + benchmark_start_time = time.perf_counter() tasks: List[asyncio.Task] = [] async for request in get_request(input_requests, request_rate): prompt, prompt_len, output_len, mm_content = request - request_func_input = RequestFuncInput( - model=model_id, - prompt=prompt, - api_url=api_url, - prompt_len=prompt_len, - output_len=output_len, - logprobs=logprobs, - best_of=best_of, - use_beam_search=use_beam_search, - multi_modal_content=mm_content, - ) + request_func_input = RequestFuncInput(model=model_id, + prompt=prompt, + api_url=api_url, + prompt_len=prompt_len, + output_len=output_len, + logprobs=logprobs, + best_of=best_of, + multi_modal_content=mm_content, + ignore_eos=ignore_eos) tasks.append( asyncio.create_task( - request_func(request_func_input=request_func_input, - pbar=pbar))) + limited_request_func(request_func_input=request_func_input, + pbar=pbar))) outputs: List[RequestFuncOutput] = await asyncio.gather(*tasks) if profile: @@ -481,7 +529,6 @@ async def benchmark( output_len=test_output_len, logprobs=logprobs, best_of=best_of, - use_beam_search=use_beam_search, ) profile_output = await request_func(request_func_input=profile_input) if profile_output.success: @@ -499,6 +546,7 @@ async def benchmark( tokenizer=tokenizer, selected_percentile_metrics=selected_percentile_metrics, selected_percentiles=selected_percentiles, + gootput_config_dict=gootput_config_dict, ) print("{s:{c}^{n}}".format(s=' Serving Benchmark Result ', n=50, c='=')) @@ -510,6 +558,9 @@ async def benchmark( metrics.total_output)) print("{:<40} {:<10.2f}".format("Request throughput (req/s):", metrics.request_throughput)) + if gootput_config_dict: + print("{:<40} {:<10.2f}".format("Request goodput (req/s):", + metrics.request_goodput)) print("{:<40} {:<10.2f}".format("Output token throughput (tok/s):", metrics.output_throughput)) print("{:<40} {:<10.2f}".format("Total Token throughput (tok/s):", @@ -521,6 +572,8 @@ async def benchmark( "total_input_tokens": metrics.total_input, "total_output_tokens": metrics.total_output, "request_throughput": metrics.request_throughput, + "request_goodput:": + metrics.request_goodput if gootput_config_dict else None, "output_throughput": metrics.output_throughput, "total_token_throughput": metrics.total_token_throughput, "input_lens": [output.prompt_len for output in outputs], @@ -539,7 +592,7 @@ def process_one_metric( # E.g., "Time to First Token" metric_header: str, ): - # This function print and add statistics of the specified + # This function prints and adds statistics of the specified # metric. if metric_attribute_name not in selected_percentile_metrics: return @@ -574,6 +627,41 @@ def process_one_metric( return result +def check_goodput_args(args): + # Check and parse goodput arguments + gootput_config_dict = {} + VALID_NAMES = ["ttft", "tpot", "e2el"] + if args.goodput: + gootput_config_dict = parse_goodput(args.goodput) + for slo_name, slo_val in gootput_config_dict.items(): + if slo_name not in VALID_NAMES: + raise ValueError( + f"Invalid metric name found, {slo_name}: {slo_val}. " + "The service level objective name should be one of " + f"{str(VALID_NAMES)}. ") + if slo_val < 0: + raise ValueError( + f"Invalid value found, {slo_name}: {slo_val}. " + "The service level objective value should be " + "non-negative.") + return gootput_config_dict + + +def parse_goodput(slo_pairs): + gootput_config_dict = {} + try: + for slo_pair in slo_pairs: + slo_name, slo_val = slo_pair.split(":") + gootput_config_dict[slo_name] = float(slo_val) + except ValueError as err: + raise argparse.ArgumentTypeError( + "Invalid format found for service level objectives. " + "Specify service level objectives for goodput as \"KEY:VALUE\" " + "pairs, where the key is a metric name, and the value is a " + "number in milliseconds.") from err + return gootput_config_dict + + def main(args: argparse.Namespace): print(args) random.seed(args.seed) @@ -651,6 +739,7 @@ def main(args: argparse.Namespace): dataset_split=args.hf_split, num_requests=args.num_prompts, tokenizer=tokenizer, + random_seed=args.seed, fixed_output_len=args.hf_output_len, ) @@ -667,6 +756,8 @@ def main(args: argparse.Namespace): else: raise ValueError(f"Unknown dataset: {args.dataset_name}") + gootput_config_dict = check_goodput_args(args) + benchmark_result = asyncio.run( benchmark( backend=backend, @@ -677,7 +768,6 @@ def main(args: argparse.Namespace): input_requests=input_requests, logprobs=args.logprobs, best_of=args.best_of, - use_beam_search=args.use_beam_search, request_rate=args.request_rate, disable_tqdm=args.disable_tqdm, profile=args.profile, @@ -685,6 +775,9 @@ def main(args: argparse.Namespace): selected_percentiles=[ float(p) for p in args.metric_percentiles.split(",") ], + ignore_eos=args.ignore_eos, + gootput_config_dict=gootput_config_dict, + max_concurrency=args.max_concurrency, )) # Save config and results to json @@ -698,7 +791,6 @@ def main(args: argparse.Namespace): result_json["model_id"] = model_id result_json["tokenizer_id"] = tokenizer_id result_json["best_of"] = args.best_of - result_json["use_beam_search"] = args.use_beam_search result_json["num_prompts"] = args.num_prompts # Metadata @@ -715,18 +807,21 @@ def main(args: argparse.Namespace): # Traffic result_json["request_rate"] = ( args.request_rate if args.request_rate < float("inf") else "inf") + result_json["max_concurrency"] = args.max_concurrency # Merge with benchmark result result_json = {**result_json, **benchmark_result} # Save to file base_model_id = model_id.split("/")[-1] - file_name = f"{backend}-{args.request_rate}qps-{base_model_id}-{current_dt}.json" #noqa + max_concurrency_str = (f"-concurrency{args.max_concurrency}" + if args.max_concurrency is not None else "") + file_name = f"{backend}-{args.request_rate}qps{max_concurrency_str}-{base_model_id}-{current_dt}.json" #noqa if args.result_filename: file_name = args.result_filename if args.result_dir: file_name = os.path.join(args.result_dir, file_name) - with open(file_name, "w") as outfile: + with open(file_name, "w", encoding='utf-8') as outfile: json.dump(result_json, outfile) @@ -772,6 +867,19 @@ def main(args: argparse.Namespace): default=None, help="Path to the sharegpt/sonnet dataset. " "Or the huggingface dataset ID if using HF dataset.") + parser.add_argument( + "--max-concurrency", + type=int, + default=None, + help="Maximum number of concurrent requests. This can be used " + "to help simulate an environment where a higher level component " + "is enforcing a maximum number of concurrent requests. While the " + "--request-rate argument controls the rate at which requests are " + "initiated, this argument will control how many are actually allowed " + "to execute at a time. This means that when used in combination, the " + "actual request rate may be lower than specified with --request-rate, " + "if the server is not processing requests fast enough to keep up.") + parser.add_argument( "--model", type=str, @@ -863,6 +971,11 @@ def main(args: argparse.Namespace): "{backend}-{args.request_rate}qps-{base_model_id}-{current_dt}.json" " format.", ) + parser.add_argument( + "--ignore-eos", + action="store_true", + help="Set ignore_eos flag when sending the benchmark request." + "Warning: ignore_eos is not supported in deepspeed_mii and tgi.") parser.add_argument( "--percentile-metrics", type=str, @@ -880,6 +993,17 @@ def main(args: argparse.Namespace): "Default value is \"99\". " "Use \"--percentile-metrics\" to select metrics.", ) + parser.add_argument( + "--goodput", + nargs="+", + required=False, + help="Specify service level objectives for goodput as \"KEY:VALUE\" " + "pairs, where the key is a metric name, and the value is in " + "milliseconds. Multiple \"KEY:VALUE\" pairs can be provided, " + "separated by spaces. Allowed request level metric names are " + "\"ttft\", \"tpot\", \"e2el\". For more context on the definition of " + "goodput, refer to DistServe paper: https://arxiv.org/pdf/2401.09670 " + "and the blog: https://hao-ai-lab.github.io/blogs/distserve") # group for dataset specific arguments sonnet_group = parser.add_argument_group("sonnet dataset options") diff --git a/benchmarks/benchmark_throughput.py b/benchmarks/benchmark_throughput.py index 68b401d5bbbb7..ee41c8ea38382 100644 --- a/benchmarks/benchmark_throughput.py +++ b/benchmarks/benchmark_throughput.py @@ -1,5 +1,6 @@ """Benchmark offline inference throughput.""" import argparse +import dataclasses import json import random import time @@ -11,10 +12,10 @@ from transformers import (AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerBase) -from vllm.engine.arg_utils import DEVICE_OPTIONS, AsyncEngineArgs, EngineArgs +from vllm.engine.arg_utils import AsyncEngineArgs, EngineArgs from vllm.entrypoints.openai.api_server import ( build_async_engine_client_from_engine_args) -from vllm.model_executor.layers.quantization import QUANTIZATION_METHODS +from vllm.sampling_params import BeamSearchParams from vllm.utils import FlexibleArgumentParser, merge_async_iterators @@ -66,57 +67,11 @@ def sample_requests( def run_vllm( requests: List[Tuple[str, int, int]], - model: str, - tokenizer: str, - quantization: Optional[str], - tensor_parallel_size: int, - seed: int, n: int, - use_beam_search: bool, - trust_remote_code: bool, - dtype: str, - max_model_len: Optional[int], - enforce_eager: bool, - kv_cache_dtype: str, - quantization_param_path: Optional[str], - device: str, - enable_prefix_caching: bool, - enable_chunked_prefill: bool, - max_num_batched_tokens: int, - distributed_executor_backend: Optional[str], - gpu_memory_utilization: float = 0.9, - num_scheduler_steps: int = 1, - use_v2_block_manager: bool = False, - download_dir: Optional[str] = None, - load_format: str = EngineArgs.load_format, - disable_async_output_proc: bool = False, - use_new_beam_search_impl: bool = False, + engine_args: EngineArgs, ) -> float: from vllm import LLM, SamplingParams - llm = LLM( - model=model, - tokenizer=tokenizer, - quantization=quantization, - tensor_parallel_size=tensor_parallel_size, - seed=seed, - trust_remote_code=trust_remote_code, - dtype=dtype, - max_model_len=max_model_len, - gpu_memory_utilization=gpu_memory_utilization, - enforce_eager=enforce_eager, - kv_cache_dtype=kv_cache_dtype, - quantization_param_path=quantization_param_path, - device=device, - enable_prefix_caching=enable_prefix_caching, - download_dir=download_dir, - enable_chunked_prefill=enable_chunked_prefill, - max_num_batched_tokens=max_num_batched_tokens, - distributed_executor_backend=distributed_executor_backend, - load_format=load_format, - num_scheduler_steps=num_scheduler_steps, - use_v2_block_manager=use_v2_block_manager, - disable_async_output_proc=disable_async_output_proc, - ) + llm = LLM(**dataclasses.asdict(engine_args)) # Add the requests to the engine. prompts: List[str] = [] @@ -126,88 +81,43 @@ def run_vllm( sampling_params.append( SamplingParams( n=n, - temperature=0.0 if use_beam_search else 1.0, + temperature=1.0, top_p=1.0, - use_beam_search=use_beam_search, ignore_eos=True, max_tokens=output_len, )) - if not use_new_beam_search_impl: + use_beam_search = False + + if not use_beam_search: start = time.perf_counter() llm.generate(prompts, sampling_params, use_tqdm=True) end = time.perf_counter() else: - assert use_beam_search prompts = [prompt for prompt, _, _ in requests] # output_len should be the same for all requests. output_len = requests[0][2] for prompt, input_len, _output_len in requests: assert _output_len == output_len start = time.perf_counter() - llm.beam_search(prompts, - beam_width=n, - max_tokens=output_len, - ignore_eos=True) + llm.beam_search( + prompts, + BeamSearchParams( + beam_width=n, + max_tokens=output_len, + ignore_eos=True, + )) end = time.perf_counter() return end - start async def run_vllm_async( requests: List[Tuple[str, int, int]], - model: str, - tokenizer: str, - quantization: Optional[str], - tensor_parallel_size: int, - seed: int, n: int, - use_beam_search: bool, - trust_remote_code: bool, - dtype: str, - max_model_len: Optional[int], - enforce_eager: bool, - kv_cache_dtype: str, - quantization_param_path: Optional[str], - device: str, - enable_prefix_caching: bool, - enable_chunked_prefill: bool, - max_num_batched_tokens: int, - distributed_executor_backend: Optional[str], - gpu_memory_utilization: float = 0.9, - num_scheduler_steps: int = 1, - use_v2_block_manager: bool = False, - download_dir: Optional[str] = None, - load_format: str = EngineArgs.load_format, - disable_async_output_proc: bool = False, + engine_args: AsyncEngineArgs, disable_frontend_multiprocessing: bool = False, ) -> float: from vllm import SamplingParams - engine_args = AsyncEngineArgs( - model=model, - tokenizer=tokenizer, - quantization=quantization, - tensor_parallel_size=tensor_parallel_size, - seed=seed, - trust_remote_code=trust_remote_code, - dtype=dtype, - max_model_len=max_model_len, - gpu_memory_utilization=gpu_memory_utilization, - enforce_eager=enforce_eager, - kv_cache_dtype=kv_cache_dtype, - quantization_param_path=quantization_param_path, - device=device, - enable_prefix_caching=enable_prefix_caching, - download_dir=download_dir, - enable_chunked_prefill=enable_chunked_prefill, - max_num_batched_tokens=max_num_batched_tokens, - distributed_executor_backend=distributed_executor_backend, - load_format=load_format, - num_scheduler_steps=num_scheduler_steps, - use_v2_block_manager=use_v2_block_manager, - disable_async_output_proc=disable_async_output_proc, - worker_use_ray=False, - disable_log_requests=True, - ) async with build_async_engine_client_from_engine_args( engine_args, disable_frontend_multiprocessing) as llm: @@ -220,9 +130,8 @@ async def run_vllm_async( sampling_params.append( SamplingParams( n=n, - temperature=0.0 if use_beam_search else 1.0, + temperature=1.0, top_p=1.0, - use_beam_search=use_beam_search, ignore_eos=True, max_tokens=output_len, )) @@ -244,11 +153,9 @@ def run_hf( model: str, tokenizer: PreTrainedTokenizerBase, n: int, - use_beam_search: bool, max_batch_size: int, trust_remote_code: bool, ) -> float: - assert not use_beam_search llm = AutoModelForCausalLM.from_pretrained( model, torch_dtype=torch.float16, trust_remote_code=trust_remote_code) if llm.config.model_type == "llama": @@ -280,7 +187,7 @@ def run_hf( padding=True).input_ids llm_outputs = llm.generate( input_ids=input_ids.cuda(), - do_sample=not use_beam_search, + do_sample=True, num_return_sequences=n, temperature=1.0, top_p=1.0, @@ -326,7 +233,16 @@ def main(args: argparse.Namespace): args.tokenizer, trust_remote_code=args.trust_remote_code) if args.dataset is None: # Synthesize a prompt with the given input length. - prompt = "hi" * (args.input_len - 1) + # As tokenizer may add additional tokens like BOS, we need to try + # different lengths to get the desired input length. + for i in range(-10, 10): + prompt = "hi " * (args.input_len + i) + tokenized_prompt = tokenizer(prompt).input_ids + if len(tokenized_prompt) == args.input_len: + break + else: + raise ValueError( + f"Failed to synthesize a prompt with {args.input_len} tokens.") requests = [(prompt, args.input_len, args.output_len) for _ in range(args.num_prompts)] else: @@ -334,29 +250,21 @@ def main(args: argparse.Namespace): args.output_len) if args.backend == "vllm": - run_args = [ - requests, args.model, args.tokenizer, args.quantization, - args.tensor_parallel_size, args.seed, args.n, args.use_beam_search, - args.trust_remote_code, args.dtype, args.max_model_len, - args.enforce_eager, args.kv_cache_dtype, - args.quantization_param_path, args.device, - args.enable_prefix_caching, args.enable_chunked_prefill, - args.max_num_batched_tokens, args.distributed_executor_backend, - args.gpu_memory_utilization, args.num_scheduler_steps, - args.use_v2_block_manager, args.download_dir, args.load_format, - args.disable_async_output_proc - ] - if args.async_engine: - run_args.append(args.disable_frontend_multiprocessing) - elapsed_time = uvloop.run(run_vllm_async(*run_args)) + elapsed_time = uvloop.run( + run_vllm_async( + requests, + args.n, + AsyncEngineArgs.from_cli_args(args), + args.disable_frontend_multiprocessing, + )) else: - elapsed_time = run_vllm(*run_args, args.use_new_beam_search_impl) + elapsed_time = run_vllm(requests, args.n, + EngineArgs.from_cli_args(args)) elif args.backend == "hf": assert args.tensor_parallel_size == 1 elapsed_time = run_hf(requests, args.model, tokenizer, args.n, - args.use_beam_search, args.hf_max_batch_size, - args.trust_remote_code) + args.hf_max_batch_size, args.trust_remote_code) elif args.backend == "mii": elapsed_time = run_mii(requests, args.model, args.tensor_parallel_size, args.output_len) @@ -364,8 +272,10 @@ def main(args: argparse.Namespace): raise ValueError(f"Unknown backend: {args.backend}") total_num_tokens = sum(prompt_len + output_len for _, prompt_len, output_len in requests) + total_output_tokens = sum(output_len for _, _, output_len in requests) print(f"Throughput: {len(requests) / elapsed_time:.2f} requests/s, " - f"{total_num_tokens / elapsed_time:.2f} tokens/s") + f"{total_num_tokens / elapsed_time:.2f} total tokens/s, " + f"{total_output_tokens / elapsed_time:.2f} output tokens/s") # Output JSON results if specified if args.output_json: @@ -399,143 +309,23 @@ def main(args: argparse.Namespace): default=None, help="Output length for each request. Overrides the " "output length from the dataset.") - parser.add_argument("--model", type=str, default="facebook/opt-125m") - parser.add_argument("--tokenizer", type=str, default=None) - parser.add_argument('--quantization', - '-q', - choices=[*QUANTIZATION_METHODS, None], - default=None) - parser.add_argument("--tensor-parallel-size", "-tp", type=int, default=1) parser.add_argument("--n", type=int, default=1, help="Number of generated sequences per prompt.") - parser.add_argument("--use-beam-search", action="store_true") - parser.add_argument("--use-new-beam-search-impl", action="store_true") parser.add_argument("--num-prompts", type=int, default=1000, help="Number of prompts to process.") - parser.add_argument("--seed", type=int, default=0) parser.add_argument("--hf-max-batch-size", type=int, default=None, help="Maximum batch size for HF backend.") - parser.add_argument('--trust-remote-code', - action='store_true', - help='trust remote code from huggingface') - parser.add_argument( - '--max-model-len', - type=int, - default=None, - help='Maximum length of a sequence (including prompt and output). ' - 'If None, will be derived from the model.') - parser.add_argument( - '--dtype', - type=str, - default='auto', - choices=['auto', 'half', 'float16', 'bfloat16', 'float', 'float32'], - help='data type for model weights and activations. ' - 'The "auto" option will use FP16 precision ' - 'for FP32 and FP16 models, and BF16 precision ' - 'for BF16 models.') - parser.add_argument('--gpu-memory-utilization', - type=float, - default=0.9, - help='the fraction of GPU memory to be used for ' - 'the model executor, which can range from 0 to 1.' - 'If unspecified, will use the default value of 0.9.') - parser.add_argument("--enforce-eager", - action="store_true", - help="enforce eager execution") - parser.add_argument( - '--kv-cache-dtype', - type=str, - choices=['auto', 'fp8', 'fp8_e5m2', 'fp8_e4m3'], - default="auto", - help='Data type for kv cache storage. If "auto", will use model ' - 'data type. CUDA 11.8+ supports fp8 (=fp8_e4m3) and fp8_e5m2. ' - 'ROCm (AMD GPU) supports fp8 (=fp8_e4m3)') - parser.add_argument( - '--quantization-param-path', - type=str, - default=None, - help='Path to the JSON file containing the KV cache scaling factors. ' - 'This should generally be supplied, when KV cache dtype is FP8. ' - 'Otherwise, KV cache scaling factors default to 1.0, which may cause ' - 'accuracy issues. FP8_E5M2 (without scaling) is only supported on ' - 'cuda version greater than 11.8. On ROCm (AMD GPU), FP8_E4M3 is ' - 'instead supported for common inference criteria.') - parser.add_argument("--device", - type=str, - default="auto", - choices=DEVICE_OPTIONS, - help='device type for vLLM execution') - parser.add_argument( - "--num-scheduler-steps", - type=int, - default=1, - help="Maximum number of forward steps per scheduler call.") - parser.add_argument("--use-v2-block-manager", - action='store_true', - help="Enable block manager v2.") - parser.add_argument( - "--enable-prefix-caching", - action='store_true', - help="Enable automatic prefix caching for vLLM backend.") - parser.add_argument("--enable-chunked-prefill", - action='store_true', - help="enable chunked prefill for vLLM backend.") - parser.add_argument('--max-num-batched-tokens', - type=int, - default=None, - help='maximum number of batched tokens per ' - 'iteration') - parser.add_argument('--download-dir', - type=str, - default=None, - help='directory to download and load the weights, ' - 'default to the default cache dir of huggingface') parser.add_argument( '--output-json', type=str, default=None, help='Path to save the throughput results in JSON format.') - parser.add_argument( - '--distributed-executor-backend', - choices=['ray', 'mp'], - default=None, - help='Backend to use for distributed serving. When more than 1 GPU ' - 'is used, will be automatically set to "ray" if installed ' - 'or "mp" (multiprocessing) otherwise.') - parser.add_argument( - '--load-format', - type=str, - default=EngineArgs.load_format, - choices=[ - 'auto', 'pt', 'safetensors', 'npcache', 'dummy', 'tensorizer', - 'bitsandbytes' - ], - help='The format of the model weights to load.\n\n' - '* "auto" will try to load the weights in the safetensors format ' - 'and fall back to the pytorch bin format if safetensors format ' - 'is not available.\n' - '* "pt" will load the weights in the pytorch bin format.\n' - '* "safetensors" will load the weights in the safetensors format.\n' - '* "npcache" will load the weights in pytorch format and store ' - 'a numpy cache to speed up the loading.\n' - '* "dummy" will initialize the weights with random values, ' - 'which is mainly for profiling.\n' - '* "tensorizer" will load the weights using tensorizer from ' - 'CoreWeave. See the Tensorize vLLM Model script in the Examples' - 'section for more information.\n' - '* "bitsandbytes" will load the weights using bitsandbytes ' - 'quantization.\n') - parser.add_argument( - "--disable-async-output-proc", - action='store_true', - default=False, - help="Disable async output processor for vLLM backend.") parser.add_argument("--async-engine", action='store_true', default=False, @@ -544,6 +334,7 @@ def main(args: argparse.Namespace): action='store_true', default=False, help="Disable decoupled async engine frontend.") + parser = AsyncEngineArgs.add_cli_args(parser) args = parser.parse_args() if args.tokenizer is None: args.tokenizer = args.model @@ -566,8 +357,6 @@ def main(args: argparse.Namespace): raise ValueError("dtype must be auto for MII backend.") if args.n != 1: raise ValueError("n must be 1 for MII backend.") - if args.use_beam_search: - raise ValueError("Beam search is not supported for MII backend.") if args.quantization is not None: raise ValueError("Quantization is only for vLLM backend.") if args.hf_max_batch_size is not None: diff --git a/benchmarks/kernels/benchmark_layernorm.py b/benchmarks/kernels/benchmark_layernorm.py index 92f6053cc6d7e..7acea6087fdfd 100644 --- a/benchmarks/kernels/benchmark_layernorm.py +++ b/benchmarks/kernels/benchmark_layernorm.py @@ -3,8 +3,8 @@ import torch from vllm.model_executor.layers.layernorm import RMSNorm -from vllm.utils import (STR_DTYPE_TO_TORCH_DTYPE, FlexibleArgumentParser, - seed_everything) +from vllm.platforms import current_platform +from vllm.utils import STR_DTYPE_TO_TORCH_DTYPE, FlexibleArgumentParser @torch.inference_mode() @@ -16,7 +16,7 @@ def main(num_tokens: int, do_profile: bool = False, num_warmup_iters: int = 5, num_iters: int = 100) -> None: - seed_everything(seed) + current_platform.seed_everything(seed) torch.set_default_device("cuda") layer = RMSNorm(hidden_size).to(dtype=dtype) diff --git a/benchmarks/kernels/benchmark_moe.py b/benchmarks/kernels/benchmark_moe.py index c2ad98b7e2656..8f538c21f7f7e 100644 --- a/benchmarks/kernels/benchmark_moe.py +++ b/benchmarks/kernels/benchmark_moe.py @@ -10,7 +10,8 @@ from transformers import AutoConfig from vllm.model_executor.layers.fused_moe.fused_moe import * -from vllm.utils import FlexibleArgumentParser, seed_everything +from vllm.platforms import current_platform +from vllm.utils import FlexibleArgumentParser class BenchmarkConfig(TypedDict): @@ -88,22 +89,23 @@ def prepare(i: int): input_gating.copy_(gating_output[i]) def run(): - fused_moe( - x, - w1, - w2, - input_gating, - topk, - renormalize=True, - inplace=True, - override_config=config, - use_fp8_w8a8=use_fp8_w8a8, - use_int8_w8a16=use_int8_w8a16, - w1_scale=w1_scale, - w2_scale=w2_scale, - a1_scale=a1_scale, - a2_scale=a2_scale, - ) + from vllm.model_executor.layers.fused_moe import override_config + with override_config(config): + fused_moe( + x, + w1, + w2, + input_gating, + topk, + renormalize=True, + inplace=True, + use_fp8_w8a8=use_fp8_w8a8, + use_int8_w8a16=use_int8_w8a16, + w1_scale=w1_scale, + w2_scale=w2_scale, + a1_scale=a1_scale, + a2_scale=a2_scale, + ) # JIT compilation & warmup run() @@ -166,7 +168,7 @@ class BenchmarkWorker: def __init__(self, seed: int) -> None: torch.set_default_device("cuda") - seed_everything(seed) + current_platform.seed_everything(seed) self.seed = seed def benchmark( @@ -180,7 +182,7 @@ def benchmark( use_fp8_w8a8: bool, use_int8_w8a16: bool, ) -> Tuple[Dict[str, int], float]: - seed_everything(self.seed) + current_platform.seed_everything(self.seed) dtype_str = get_config_dtype_str(dtype, use_int8_w8a16=use_int8_w8a16, use_fp8_w8a8=use_fp8_w8a8) diff --git a/benchmarks/kernels/benchmark_paged_attention.py b/benchmarks/kernels/benchmark_paged_attention.py index 87864d038d593..14eef00b855ac 100644 --- a/benchmarks/kernels/benchmark_paged_attention.py +++ b/benchmarks/kernels/benchmark_paged_attention.py @@ -5,8 +5,9 @@ import torch from vllm import _custom_ops as ops +from vllm.platforms import current_platform from vllm.utils import (STR_DTYPE_TO_TORCH_DTYPE, FlexibleArgumentParser, - create_kv_caches_with_random, seed_everything) + create_kv_caches_with_random) NUM_BLOCKS = 1024 PARTITION_SIZE = 512 @@ -28,7 +29,7 @@ def main( device: str = "cuda", kv_cache_dtype: Optional[str] = None, ) -> None: - seed_everything(seed) + current_platform.seed_everything(seed) scale = float(1.0 / (head_size**0.5)) query = torch.empty(num_seqs, diff --git a/benchmarks/kernels/benchmark_quant.py b/benchmarks/kernels/benchmark_quant.py index 743a5744e8614..1d62483448946 100644 --- a/benchmarks/kernels/benchmark_quant.py +++ b/benchmarks/kernels/benchmark_quant.py @@ -3,8 +3,8 @@ import torch from vllm import _custom_ops as ops -from vllm.utils import (STR_DTYPE_TO_TORCH_DTYPE, FlexibleArgumentParser, - seed_everything) +from vllm.platforms import current_platform +from vllm.utils import STR_DTYPE_TO_TORCH_DTYPE, FlexibleArgumentParser @torch.inference_mode() @@ -17,7 +17,7 @@ def main(num_tokens: int, do_profile: bool = False, num_warmup_iters: int = 5, num_iters: int = 100) -> None: - seed_everything(seed) + current_platform.seed_everything(seed) torch.set_default_device("cuda") x = torch.randn(num_tokens, hidden_size, dtype=dtype) diff --git a/benchmarks/kernels/benchmark_rope.py b/benchmarks/kernels/benchmark_rope.py index 73fc9e9dbf461..250d505168d09 100644 --- a/benchmarks/kernels/benchmark_rope.py +++ b/benchmarks/kernels/benchmark_rope.py @@ -6,7 +6,8 @@ from vllm.model_executor.layers.rotary_embedding import (RotaryEmbedding, get_rope) -from vllm.utils import FlexibleArgumentParser, seed_everything +from vllm.platforms import current_platform +from vllm.utils import FlexibleArgumentParser def benchmark_rope_kernels_multi_lora( @@ -22,7 +23,7 @@ def benchmark_rope_kernels_multi_lora( max_position: int = 8192, base: int = 10000, ) -> None: - seed_everything(seed) + current_platform.seed_everything(seed) torch.set_default_device(device) if rotary_dim is None: rotary_dim = head_size @@ -31,7 +32,7 @@ def benchmark_rope_kernels_multi_lora( # batched RoPE can take multiple scaling factors batched_rope = get_rope(head_size, rotary_dim, max_position, base, is_neox_style, { - "type": "linear", + "rope_type": "linear", "factor": tuple(scaling_factors) }) # non-batched RoPE takes only one scaling factor, we create multiple @@ -41,7 +42,7 @@ def benchmark_rope_kernels_multi_lora( non_batched_ropes.append( get_rope(head_size, rotary_dim, max_position, base, is_neox_style, { - "type": "linear", + "rope_type": "linear", "factor": (scaling_factor, ) })) diff --git a/benchmarks/overheads/benchmark_hashing.py b/benchmarks/overheads/benchmark_hashing.py index 203699e9a8d06..d16d6f9fba442 100644 --- a/benchmarks/overheads/benchmark_hashing.py +++ b/benchmarks/overheads/benchmark_hashing.py @@ -16,7 +16,6 @@ def main(args): enforce_eager=True, enable_prefix_caching=True, tensor_parallel_size=args.tensor_parallel_size, - use_v2_block_manager=args.use_v2_block_manager, ) sampling_params = SamplingParams(temperature=0, max_tokens=args.output_len) @@ -56,8 +55,5 @@ def main(args): parser.add_argument('--enable-prefix-caching', action='store_true', help='enable prefix caching') - parser.add_argument('--use-v2-block-manager', - action='store_true', - help='Use BlockSpaceMangerV2') args = parser.parse_args() main(args) diff --git a/cmake/cpu_extension.cmake b/cmake/cpu_extension.cmake index 3c474bd58d04e..7237d246ddf55 100644 --- a/cmake/cpu_extension.cmake +++ b/cmake/cpu_extension.cmake @@ -1,5 +1,8 @@ +include(FetchContent) + +set(CMAKE_CXX_STANDARD_REQUIRED ON) +set(CMAKE_CXX_EXTENSIONS ON) set(CMAKE_EXPORT_COMPILE_COMMANDS ON) -set(CMAKE_CXX_STANDARD 17) # # Define environment variables for special configurations @@ -82,9 +85,39 @@ else() message(FATAL_ERROR "vLLM CPU backend requires AVX512 or AVX2 or Power9+ ISA support.") endif() +# +# Build oneDNN for W8A8 GEMM kernels (only for x86-AVX512 platforms) +# +if (AVX512_FOUND AND NOT AVX512_DISABLED) + FetchContent_Declare( + oneDNN + GIT_REPOSITORY https://github.com/oneapi-src/oneDNN.git + GIT_TAG v3.5.3 + GIT_PROGRESS TRUE + GIT_SHALLOW TRUE + ) + + set(ONEDNN_LIBRARY_TYPE "STATIC") + set(ONEDNN_BUILD_DOC "OFF") + set(ONEDNN_BUILD_EXAMPLES "OFF") + set(ONEDNN_BUILD_TESTS "OFF") + set(ONEDNN_ENABLE_WORKLOAD "INFERENCE") + set(ONEDNN_ENABLE_PRIMITIVE "MATMUL;REORDER") + set(ONEDNN_BUILD_GRAPH "OFF") + set(ONEDNN_ENABLE_JIT_PROFILING "OFF") + set(ONEDNN_ENABLE_ITT_TASKS "OFF") + set(ONEDNN_ENABLE_MAX_CPU_ISA "OFF") + set(ONEDNN_ENABLE_CPU_ISA_HINTS "OFF") + set(CMAKE_POLICY_DEFAULT_CMP0077 NEW) + + FetchContent_MakeAvailable(oneDNN) + + list(APPEND LIBS dnnl) +endif() + message(STATUS "CPU extension compile flags: ${CXX_COMPILE_FLAGS}") -list(APPEND LIBS dnnl numa) +list(APPEND LIBS numa) # # _C extension diff --git a/cmake/utils.cmake b/cmake/utils.cmake index 10fa0a25bde15..40430dae10c5b 100644 --- a/cmake/utils.cmake +++ b/cmake/utils.cmake @@ -133,10 +133,181 @@ macro(string_to_ver OUT_VER IN_STR) string(REGEX REPLACE "\([0-9]+\)\([0-9]\)" "\\1.\\2" ${OUT_VER} ${IN_STR}) endmacro() +# +# Clear all `-gencode` flags from `CMAKE_CUDA_FLAGS` and store them in +# `CUDA_ARCH_FLAGS`. +# +# Example: +# CMAKE_CUDA_FLAGS="-Wall -gencode arch=compute_70,code=sm_70 -gencode arch=compute_75,code=sm_75" +# clear_cuda_arches(CUDA_ARCH_FLAGS) +# CUDA_ARCH_FLAGS="-gencode arch=compute_70,code=sm_70;-gencode arch=compute_75,code=sm_75" +# CMAKE_CUDA_FLAGS="-Wall" +# +macro(clear_cuda_arches CUDA_ARCH_FLAGS) + # Extract all `-gencode` flags from `CMAKE_CUDA_FLAGS` + string(REGEX MATCHALL "-gencode arch=[^ ]+" CUDA_ARCH_FLAGS + ${CMAKE_CUDA_FLAGS}) + + # Remove all `-gencode` flags from `CMAKE_CUDA_FLAGS` since they will be modified + # and passed back via the `CUDA_ARCHITECTURES` property. + string(REGEX REPLACE "-gencode arch=[^ ]+ *" "" CMAKE_CUDA_FLAGS + ${CMAKE_CUDA_FLAGS}) +endmacro() + +# +# Extract unique CUDA architectures from a list of compute capabilities codes in +# the form `[]`, convert them to the form sort +# `.`, dedupes them and then sorts them in ascending order and +# stores them in `OUT_ARCHES`. +# +# Example: +# CUDA_ARCH_FLAGS="-gencode arch=compute_75,code=sm_75;...;-gencode arch=compute_90a,code=sm_90a" +# extract_unique_cuda_archs_ascending(OUT_ARCHES CUDA_ARCH_FLAGS) +# OUT_ARCHES="7.5;...;9.0" +function(extract_unique_cuda_archs_ascending OUT_ARCHES CUDA_ARCH_FLAGS) + set(_CUDA_ARCHES) + foreach(_ARCH ${CUDA_ARCH_FLAGS}) + string(REGEX MATCH "arch=compute_\([0-9]+a?\)" _COMPUTE ${_ARCH}) + if (_COMPUTE) + set(_COMPUTE ${CMAKE_MATCH_1}) + endif() + + string_to_ver(_COMPUTE_VER ${_COMPUTE}) + list(APPEND _CUDA_ARCHES ${_COMPUTE_VER}) + endforeach() + + list(REMOVE_DUPLICATES _CUDA_ARCHES) + list(SORT _CUDA_ARCHES COMPARE NATURAL ORDER ASCENDING) + set(${OUT_ARCHES} ${_CUDA_ARCHES} PARENT_SCOPE) +endfunction() + +# +# For a specific file set the `-gencode` flag in compile options conditionally +# for the CUDA language. +# +# Example: +# set_gencode_flag_for_srcs( +# SRCS "foo.cu" +# ARCH "compute_75" +# CODE "sm_75") +# adds: "-gencode arch=compute_75,code=sm_75" to the compile options for +# `foo.cu` (only for the CUDA language). +# +macro(set_gencode_flag_for_srcs) + set(options) + set(oneValueArgs ARCH CODE) + set(multiValueArgs SRCS) + cmake_parse_arguments(arg "${options}" "${oneValueArgs}" + "${multiValueArgs}" ${ARGN} ) + set(_FLAG -gencode arch=${arg_ARCH},code=${arg_CODE}) + set_property( + SOURCE ${arg_SRCS} + APPEND PROPERTY + COMPILE_OPTIONS "$<$:${_FLAG}>" + ) + + message(DEBUG "Setting gencode flag for ${arg_SRCS}: ${_FLAG}") +endmacro(set_gencode_flag_for_srcs) + +# +# For a list of source files set the `-gencode` flags in the files specific +# compile options (specifically for the CUDA language). +# +# arguments are: +# SRCS: list of source files +# CUDA_ARCHS: list of CUDA architectures in the form `.[letter]` +# BUILD_PTX_FOR_ARCH: if set to true, then the PTX code will be built +# for architecture `BUILD_PTX_FOR_ARCH` if there is a CUDA_ARCH in CUDA_ARCHS +# that is larger than BUILD_PTX_FOR_ARCH. +# +macro(set_gencode_flags_for_srcs) + set(options) + set(oneValueArgs BUILD_PTX_FOR_ARCH) + set(multiValueArgs SRCS CUDA_ARCHS) + cmake_parse_arguments(arg "${options}" "${oneValueArgs}" + "${multiValueArgs}" ${ARGN} ) + + foreach(_ARCH ${arg_CUDA_ARCHS}) + string(REPLACE "." "" _ARCH "${_ARCH}") + set_gencode_flag_for_srcs( + SRCS ${arg_SRCS} + ARCH "compute_${_ARCH}" + CODE "sm_${_ARCH}") + endforeach() + + if (${arg_BUILD_PTX_FOR_ARCH}) + list(SORT arg_CUDA_ARCHS COMPARE NATURAL ORDER ASCENDING) + list(GET arg_CUDA_ARCHS -1 _HIGHEST_ARCH) + if (_HIGHEST_ARCH VERSION_GREATER_EQUAL ${arg_BUILD_PTX_FOR_ARCH}) + string(REPLACE "." "" _PTX_ARCH "${arg_BUILD_PTX_FOR_ARCH}") + set_gencode_flag_for_srcs( + SRCS ${arg_SRCS} + ARCH "compute_${_PTX_ARCH}" + CODE "compute_${_PTX_ARCH}") + endif() + endif() +endmacro() + +# +# For the given `SRC_CUDA_ARCHS` list of gencode versions in the form +# `.[letter]` compute the "loose intersection" with the +# `TGT_CUDA_ARCHS` list of gencodes. +# The loose intersection is defined as: +# { max{ x \in tgt | x <= y } | y \in src, { x \in tgt | x <= y } != {} } +# where `<=` is the version comparison operator. +# In other words, for each version in `TGT_CUDA_ARCHS` find the highest version +# in `SRC_CUDA_ARCHS` that is less or equal to the version in `TGT_CUDA_ARCHS`. +# We have special handling for 9.0a, if 9.0a is in `SRC_CUDA_ARCHS` and 9.0 is +# in `TGT_CUDA_ARCHS` then we should remove 9.0a from `SRC_CUDA_ARCHS` and add +# 9.0a to the result. +# The result is stored in `OUT_CUDA_ARCHS`. +# +# Example: +# SRC_CUDA_ARCHS="7.5;8.0;8.6;9.0;9.0a" +# TGT_CUDA_ARCHS="8.0;8.9;9.0" +# cuda_archs_loose_intersection(OUT_CUDA_ARCHS SRC_CUDA_ARCHS TGT_CUDA_ARCHS) +# OUT_CUDA_ARCHS="8.0;8.6;9.0;9.0a" +# +function(cuda_archs_loose_intersection OUT_CUDA_ARCHS SRC_CUDA_ARCHS TGT_CUDA_ARCHS) + list(REMOVE_DUPLICATES SRC_CUDA_ARCHS) + + # if 9.0a is in SRC_CUDA_ARCHS and 9.0 is in CUDA_ARCHS then we should + # remove 9.0a from SRC_CUDA_ARCHS and add 9.0a to _CUDA_ARCHS + set(_CUDA_ARCHS) + if ("9.0a" IN_LIST SRC_CUDA_ARCHS) + list(REMOVE_ITEM SRC_CUDA_ARCHS "9.0a") + if ("9.0" IN_LIST TGT_CUDA_ARCHS) + set(_CUDA_ARCHS "9.0a") + endif() + endif() + + list(SORT SRC_CUDA_ARCHS COMPARE NATURAL ORDER ASCENDING) + + # for each ARCH in CUDA_ARCHS find the highest arch in SRC_CUDA_ARCHS that is + # less or eqault to ARCH + foreach(_ARCH ${CUDA_ARCHS}) + set(_TMP_ARCH) + foreach(_SRC_ARCH ${SRC_CUDA_ARCHS}) + if (_SRC_ARCH VERSION_LESS_EQUAL _ARCH) + set(_TMP_ARCH ${_SRC_ARCH}) + else() + break() + endif() + endforeach() + if (_TMP_ARCH) + list(APPEND _CUDA_ARCHS ${_TMP_ARCH}) + endif() + endforeach() + + list(REMOVE_DUPLICATES _CUDA_ARCHS) + set(${OUT_CUDA_ARCHS} ${_CUDA_ARCHS} PARENT_SCOPE) +endfunction() + # # Override the GPU architectures detected by cmake/torch and filter them by # `GPU_SUPPORTED_ARCHES`. Sets the final set of architectures in -# `GPU_ARCHES`. +# `GPU_ARCHES`. This only applies to the HIP language since for CUDA we set +# the architectures on a per file basis. # # Note: this is defined as a macro since it updates `CMAKE_CUDA_FLAGS`. # @@ -174,109 +345,7 @@ macro(override_gpu_arches GPU_ARCHES GPU_LANG GPU_SUPPORTED_ARCHES) "None of the detected ROCm architectures: ${HIP_ARCHITECTURES} is" " supported. Supported ROCm architectures are: ${_GPU_SUPPORTED_ARCHES_LIST}.") endif() - - elseif(${GPU_LANG} STREQUAL "CUDA") - # - # Setup/process CUDA arch flags. - # - # The torch cmake setup hardcodes the detected architecture flags in - # `CMAKE_CUDA_FLAGS`. Since `CMAKE_CUDA_FLAGS` is a "global" variable, it - # can't modified on a per-target basis. - # So, all the `-gencode` flags need to be extracted and removed from - # `CMAKE_CUDA_FLAGS` for processing so they can be passed by another method. - # Since it's not possible to use `target_compiler_options` for adding target - # specific `-gencode` arguments, the target's `CUDA_ARCHITECTURES` property - # must be used instead. This requires repackaging the architecture flags - # into a format that cmake expects for `CUDA_ARCHITECTURES`. - # - # This is a bit fragile in that it depends on torch using `-gencode` as opposed - # to one of the other nvcc options to specify architectures. - # - # Note: torch uses the `TORCH_CUDA_ARCH_LIST` environment variable to override - # detected architectures. - # - message(DEBUG "initial CMAKE_CUDA_FLAGS: ${CMAKE_CUDA_FLAGS}") - - # Extract all `-gencode` flags from `CMAKE_CUDA_FLAGS` - string(REGEX MATCHALL "-gencode arch=[^ ]+" _CUDA_ARCH_FLAGS - ${CMAKE_CUDA_FLAGS}) - - # Remove all `-gencode` flags from `CMAKE_CUDA_FLAGS` since they will be modified - # and passed back via the `CUDA_ARCHITECTURES` property. - string(REGEX REPLACE "-gencode arch=[^ ]+ *" "" CMAKE_CUDA_FLAGS - ${CMAKE_CUDA_FLAGS}) - - # If this error is triggered, it might mean that torch has changed how it sets - # up nvcc architecture code generation flags. - if (NOT _CUDA_ARCH_FLAGS) - message(FATAL_ERROR - "Could not find any architecture related code generation flags in " - "CMAKE_CUDA_FLAGS. (${CMAKE_CUDA_FLAGS})") - endif() - - message(DEBUG "final CMAKE_CUDA_FLAGS: ${CMAKE_CUDA_FLAGS}") - message(DEBUG "arch flags: ${_CUDA_ARCH_FLAGS}") - - # Initialize the architecture lists to empty. - set(${GPU_ARCHES}) - - # Process each `gencode` flag. - foreach(_ARCH ${_CUDA_ARCH_FLAGS}) - # For each flag, extract the version number and whether it refers to PTX - # or native code. - # Note: if a regex matches then `CMAKE_MATCH_1` holds the binding - # for that match. - - string(REGEX MATCH "arch=compute_\([0-9]+a?\)" _COMPUTE ${_ARCH}) - if (_COMPUTE) - set(_COMPUTE ${CMAKE_MATCH_1}) - endif() - - string(REGEX MATCH "code=sm_\([0-9]+a?\)" _SM ${_ARCH}) - if (_SM) - set(_SM ${CMAKE_MATCH_1}) - endif() - - string(REGEX MATCH "code=compute_\([0-9]+a?\)" _CODE ${_ARCH}) - if (_CODE) - set(_CODE ${CMAKE_MATCH_1}) - endif() - - # Make sure the virtual architecture can be matched. - if (NOT _COMPUTE) - message(FATAL_ERROR - "Could not determine virtual architecture from: ${_ARCH}.") - endif() - - # One of sm_ or compute_ must exist. - if ((NOT _SM) AND (NOT _CODE)) - message(FATAL_ERROR - "Could not determine a codegen architecture from: ${_ARCH}.") - endif() - - if (_SM) - # -real suffix let CMake to only generate elf code for the kernels. - # we want this, otherwise the added ptx (default) will increase binary size. - set(_VIRT "-real") - set(_CODE_ARCH ${_SM}) - else() - # -virtual suffix let CMake to generate ptx code for the kernels. - set(_VIRT "-virtual") - set(_CODE_ARCH ${_CODE}) - endif() - - # Check if the current version is in the supported arch list. - string_to_ver(_CODE_VER ${_CODE_ARCH}) - if (NOT _CODE_VER IN_LIST _GPU_SUPPORTED_ARCHES_LIST) - message(STATUS "discarding unsupported CUDA arch ${_VER}.") - continue() - endif() - - # Add it to the arch list. - list(APPEND ${GPU_ARCHES} "${_CODE_ARCH}${_VIRT}") - endforeach() endif() - message(STATUS "${GPU_LANG} target arches: ${${GPU_ARCHES}}") endmacro() # @@ -355,11 +424,7 @@ function (define_gpu_extension_target GPU_MOD_NAME) # Don't use `TORCH_LIBRARIES` for CUDA since it pulls in a bunch of # dependencies that are not necessary and may not be installed. if (GPU_LANGUAGE STREQUAL "CUDA") - if ("${CUDA_CUDA_LIB}" STREQUAL "") - set(CUDA_CUDA_LIB "${CUDA_CUDA_LIBRARY}") - endif() - target_link_libraries(${GPU_MOD_NAME} PRIVATE ${CUDA_CUDA_LIB} - ${CUDA_LIBRARIES}) + target_link_libraries(${GPU_MOD_NAME} PRIVATE CUDA::cudart CUDA::cuda_driver) else() target_link_libraries(${GPU_MOD_NAME} PRIVATE ${TORCH_LIBRARIES}) endif() diff --git a/collect_env.py b/collect_env.py index ae7f97f355253..80403d576d78f 100644 --- a/collect_env.py +++ b/collect_env.py @@ -267,23 +267,16 @@ def get_neuron_sdk_version(run_lambda): def get_vllm_version(): - version = "" - try: - import vllm - version = vllm.__version__ - except Exception: - pass - commit = "" - try: - import vllm - commit = vllm.__commit__ - except Exception: - pass - if version != "" and commit != "": - return f"{version}@{commit}" - if version == "" and commit == "": - return "N/A" - return version or commit + from vllm import __version__, __version_tuple__ + + if __version__ == "dev": + return "N/A (dev)" + + if len(__version_tuple__) == 4: # dev build + git_sha = __version_tuple__[-1][1:] # type: ignore + return f"{__version__} (git sha: {git_sha}" + + return __version__ def summarize_vllm_build_flags(): # This could be a static method if the flags are constant, or dynamic if you need to check environment variables, etc. diff --git a/csrc/activation_kernels.cu b/csrc/activation_kernels.cu index 5ed1dc3b8f792..839dc36ba4e29 100644 --- a/csrc/activation_kernels.cu +++ b/csrc/activation_kernels.cu @@ -89,6 +89,48 @@ void gelu_tanh_and_mul(torch::Tensor& out, // [..., d] namespace vllm { +template +__device__ __forceinline__ T fatrelu_kernel(const T& x, const float threshold) { + const float f = (float)x; + return (T)(f > threshold ? f : 0.0f); +} + +template +__global__ void act_and_mul_kernel_with_param( + scalar_t* __restrict__ out, const scalar_t* __restrict__ input, const int d, + const float param) { + const int64_t token_idx = blockIdx.x; + for (int64_t idx = threadIdx.x; idx < d; idx += blockDim.x) { + const scalar_t x = VLLM_LDG(&input[token_idx * 2 * d + idx]); + const scalar_t y = VLLM_LDG(&input[token_idx * 2 * d + d + idx]); + out[token_idx * d + idx] = ACT_FN(x, param) * y; + } +} + +} // namespace vllm + +#define LAUNCH_ACTIVATION_GATE_KERNEL_WITH_PARAM(KERNEL, PARAM) \ + int d = input.size(-1) / 2; \ + int64_t num_tokens = input.numel() / input.size(-1); \ + dim3 grid(num_tokens); \ + dim3 block(std::min(d, 1024)); \ + const at::cuda::OptionalCUDAGuard device_guard(device_of(input)); \ + const cudaStream_t stream = at::cuda::getCurrentCUDAStream(); \ + VLLM_DISPATCH_FLOATING_TYPES( \ + input.scalar_type(), "act_and_mul_kernel_with_param", [&] { \ + vllm::act_and_mul_kernel_with_param> \ + <<>>(out.data_ptr(), \ + input.data_ptr(), d, \ + PARAM); \ + }); + +void fatrelu_and_mul(torch::Tensor& out, // [..., d], + torch::Tensor& input, // [..., 2 * d] + double threshold) { + LAUNCH_ACTIVATION_GATE_KERNEL_WITH_PARAM(vllm::fatrelu_kernel, threshold); +} +namespace vllm { + // Element-wise activation kernel template. template __global__ void activation_kernel( diff --git a/csrc/core/registration.h b/csrc/core/registration.h index e5396e9a8b137..4d0ce1c572c1c 100644 --- a/csrc/core/registration.h +++ b/csrc/core/registration.h @@ -12,6 +12,11 @@ // could be a macro instead of a literal token. #define TORCH_LIBRARY_EXPAND(NAME, MODULE) TORCH_LIBRARY(NAME, MODULE) +// A version of the TORCH_LIBRARY_IMPL macro that expands the NAME, i.e. so NAME +// could be a macro instead of a literal token. +#define TORCH_LIBRARY_IMPL_EXPAND(NAME, DEVICE, MODULE) \ + TORCH_LIBRARY_IMPL(NAME, DEVICE, MODULE) + // REGISTER_EXTENSION allows the shared library to be loaded and initialized // via python's import statement. #define REGISTER_EXTENSION(NAME) \ diff --git a/csrc/core/scalar_type.hpp b/csrc/core/scalar_type.hpp index 0e1f360d74bd5..408e736d5bc0f 100644 --- a/csrc/core/scalar_type.hpp +++ b/csrc/core/scalar_type.hpp @@ -1,6 +1,7 @@ #pragma once -#include +// For TORCH_CHECK +#include namespace vllm { @@ -9,12 +10,7 @@ namespace vllm { // in particular it can be used to represent sub-byte data types (something // that torch.dtype currently does not support). // -// ScalarTypeTorch is a subclass of ScalarType that is compatible with -// TORCH_LIBRARY, making it accessible from Python as well meaning this class -// can be used as a argument for custom operators, helping to simplify these -// interfaces. -// -// The type definitions on the Python side can be found in: vllm/_core_ext.pyi +// The type definitions on the Python side can be found in: vllm/scalar_type.py // these type definitions should be kept up to date with any Python API changes // here. // @@ -308,204 +304,7 @@ class ScalarType { } }; -// Create a TORCH_LIBRARY compatible version of ScalarType (i.e. inherit from -// torch::CustomClassHolder), we use multiple inheritance here since we cannot -// have ScalarType inherit from torch::CustomClassHolder and have a constexpr -// constructor at the same time (torch::CustomClassHolder does not have a -// constexpr destructor) -// See also: -// https://docs.google.com/document/d/18fBMPuOJ0fY5ZQ6YyrHUppw9FA332CpNtgB6SOIgyuA -class ScalarTypeTorch : public torch::CustomClassHolder, public ScalarType { - public: - ScalarTypeTorch(int64_t exponent, int64_t mantissa, int64_t bias, - bool _signed) - : ScalarType(exponent, mantissa, bias, _signed){}; - - ScalarTypeTorch(ScalarType type) : ScalarType(type){}; - - using Base = ScalarType; - using Self = ScalarTypeTorch; - using SelfPtr = c10::intrusive_ptr; - - static void check_size_bits(int64_t size_bits, bool signed_) { - TORCH_CHECK( - size_bits <= - std::numeric_limits().mantissa)>::max(), - "size_bits bit width is too large to be represented"); - } - - static void check_bias(int64_t bias) { - using Bias = decltype(std::declval().bias); - TORCH_CHECK(bias <= std::numeric_limits::max() && - bias >= std::numeric_limits::min(), - "bias too large or small to be represented"); - } - - static void check_exponent(int64_t exponent) { - TORCH_CHECK( - exponent <= - std::numeric_limits().exponent)>::max(), - "exponent bit width is too large to be represented"); - } - - static void check_mantissa(int64_t mantissa) { - TORCH_CHECK( - mantissa <= - std::numeric_limits().mantissa)>::max(), - "mantissa bit width is too large to be represented"); - } - - static SelfPtr int_(int64_t size_bits, c10::optional bias) { - check_size_bits(size_bits, true); - check_bias(bias.value_or(0)); - return c10::make_intrusive( - ScalarType::int_(size_bits, bias.value_or(0))); - } - - static SelfPtr uint(int64_t size_bits, c10::optional bias) { - check_size_bits(size_bits, true); - check_bias(bias.value_or(0)); - return c10::make_intrusive( - ScalarType::uint(size_bits, bias.value_or(0))); - } - - static SelfPtr float_IEEE754(int64_t exponent, int64_t mantissa) { - check_mantissa(mantissa); - check_exponent(exponent); - return c10::make_intrusive( - ScalarType::float_IEEE754(exponent, mantissa)); - } - - static SelfPtr float_(int64_t exponent, int64_t mantissa, - bool finite_values_only, int64_t nan_repr) { - check_mantissa(mantissa); - check_exponent(exponent); - return c10::make_intrusive(ScalarType::float_( - exponent, mantissa, finite_values_only, NanRepr(nan_repr))); - } - - // This needs to be implemented and throw a TypeError in order for - // PyTorch's opcheck to work on ops that use ScalarTypes. - int64_t len() const { - throw c10::TypeError({__func__, __FILE__, static_cast(__LINE__)}, - "__len__ not implemented"); - return 0; - } - - // Serialize a ScalarType into a tuple of pairs. Where each pair - // is a (fieldname, value). - // For simplicity, we are just going to convert to a ScalarTypeId. - std::tuple> obj_flatten() const { - return {{"ScalarType", id()}}; - } - - // Deserialize a scalar type that has been serialized by obj_flatten, - // ostensibly from a tuple of (member name, value) pairs, but in reality - // just a ScalarTypeId. - static SelfPtr obj_unflatten( - std::tuple> const& flat_type) { - return c10::make_intrusive( - from_id(std::get<1>(std::get<0>(flat_type)))); - } - - template - static void bind_readonly_property(torch::class_& cls, - std::string const& name, T Base::*field) { - auto getter_func_helper = [field = std::move(field)](SelfPtr const& self) { - if constexpr (std::is_member_function_pointer_v) { - return (self.get()->*field)(); - } else { - return self.get()->*field; - } - }; - - auto getter_func = [field = std::move(field), - getter_func_helper = std::move(getter_func_helper)]( - SelfPtr const& self) { - auto val = getter_func_helper(self); - // upconvert uint8_t, int32_t etc. to int64_t for python - if constexpr (std::is_integral_v) { - return static_cast(val); - } else { - return val; - } - }; - - cls.def_property(name, getter_func); - } - - template - static void bind_function(torch::class_& cls, const std::string& name, - MemberFunc Cls::*member) { - cls.def(name, [member = std::move(member)](SelfPtr const& self) { - return (self.get()->*member)(); - }); - } - - template - static void bind_function(torch::class_& cls, const std::string& name, - Func func) { - cls.def(name, func); - } - - template - static void bind_static_function(torch::class_& cls, - const std::string& name, Func func) { - cls.def_static(name, func); - } - - static void bind_class(torch::Library& lib) { - auto cls = lib.class_("ScalarType") - .def(torch::init()); - - // Bind Properties - bind_readonly_property(cls, "mantissa", &Base::mantissa); - bind_readonly_property(cls, "exponent", &Base::exponent); - bind_readonly_property(cls, "bias", &Base::bias); - bind_readonly_property(cls, "signed", &Base::is_signed); - bind_readonly_property(cls, "size_bits", &Base::size_bits); - - // Bind member functions - bind_function(cls, "is_signed", &Base::is_signed); - bind_function(cls, "is_integer", &Base::is_integer); - bind_function(cls, "is_floating_point", &Base::is_floating_point); - bind_function(cls, "is_ieee_754", &Base::is_ieee_754); - bind_function(cls, "has_nans", &Base::has_nans); - bind_function(cls, "has_infs", &Base::has_infs); - bind_function(cls, "has_bias", &Base::has_bias); - - bind_function(cls, "max", [](SelfPtr const& self) { - return std::visit([](auto arg) { return c10::IValue(arg); }, - self.get()->max()); - }); - bind_function(cls, "min", [](SelfPtr const& self) { - return std::visit([](auto arg) { return c10::IValue(arg); }, - self.get()->min()); - }); - - bind_function(cls, "__len__", &ScalarTypeTorch::len); - bind_function(cls, "__str__", &Base::str); - bind_function(cls, "__eq__", [](SelfPtr const& self, SelfPtr const& other) { - return *self == *other; - }); - bind_function(cls, "__repr__", [](SelfPtr const& self) { - return "ScalarType." + self.get()->str(); - }); - - bind_function(cls, "__obj_flatten__", &ScalarTypeTorch::obj_flatten); - bind_static_function(cls, "__obj_unflatten__", - &ScalarTypeTorch::obj_unflatten); - - // Bind static functions (convenience constructors) - bind_static_function(cls, "int_", &ScalarTypeTorch::int_); - bind_static_function(cls, "uint", &ScalarTypeTorch::uint); - bind_static_function(cls, "float_IEEE754", &ScalarTypeTorch::float_IEEE754); - bind_static_function(cls, "float_", &ScalarTypeTorch::float_); - } -}; - -using ScalarTypeId = int64_t; -using ScalarTypeTorchPtr = c10::intrusive_ptr; +using ScalarTypeId = ScalarType::Id; // "rust style" names generally following: // https://github.com/pytorch/pytorch/blob/6d9f74f0af54751311f0dd71f7e5c01a93260ab3/torch/csrc/api/include/torch/types.h#L60-L70 diff --git a/csrc/core/torch_bindings.cpp b/csrc/core/torch_bindings.cpp deleted file mode 100644 index f60254189a2f7..0000000000000 --- a/csrc/core/torch_bindings.cpp +++ /dev/null @@ -1,16 +0,0 @@ -#include - -#include "scalar_type.hpp" -#include "registration.h" - -// Note the CORE exstension will be built for (almost) all hardware targets so -// new additions must account for this. (currently not built for TPU and Neuron) - -TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, lib) { - // ScalarType, a custom class for representing data types that supports - // quantized types, declared here so it can be used when creating interfaces - // for custom ops. - vllm::ScalarTypeTorch::bind_class(lib); -} - -REGISTER_EXTENSION(TORCH_EXTENSION_NAME) diff --git a/csrc/cpu/cpu_types_x86.hpp b/csrc/cpu/cpu_types_x86.hpp index 5b1d3d6442b2b..a325153b470cc 100644 --- a/csrc/cpu/cpu_types_x86.hpp +++ b/csrc/cpu/cpu_types_x86.hpp @@ -265,6 +265,30 @@ struct FP32Vec8 : public Vec { void save(float *ptr) const { _mm256_storeu_ps(ptr, reg); } }; +#ifdef __AVX512F__ +struct INT32Vec16: public Vec { + constexpr static int VEC_ELEM_NUM = 16; + union AliasReg { + __m512i reg; + int32_t values[VEC_ELEM_NUM]; + }; + + __m512i reg; + + explicit INT32Vec16(const void* data_ptr) : reg(_mm512_loadu_epi32(data_ptr)) {} + + void save(int32_t* ptr) const { + _mm512_storeu_epi32(ptr, reg); + } + + void save(int32_t* ptr, const int elem_num) const { + constexpr uint32_t M = 0xFFFFFFFF; + __mmask16 mask = _cvtu32_mask16(M >> (32 - elem_num)); + _mm512_mask_storeu_epi32(ptr, mask, reg); + } +}; +#endif + #ifdef __AVX512F__ struct FP32Vec16 : public Vec { constexpr static int VEC_ELEM_NUM = 16; @@ -283,8 +307,6 @@ struct FP32Vec16 : public Vec { explicit FP32Vec16(__m512 data) : reg(data) {} - explicit FP32Vec16(const FP32Vec16 &data) : reg(data.reg) {} - explicit FP32Vec16(const FP32Vec4 &data) : reg((__m512)_mm512_inserti32x4( _mm512_inserti32x4( @@ -303,6 +325,9 @@ struct FP32Vec16 : public Vec { explicit FP32Vec16(const BF16Vec8 &v) : FP32Vec16(FP32Vec8(v)) {} + explicit FP32Vec16(const INT32Vec16 &v) + : reg(_mm512_cvt_roundepi32_ps(v.reg, _MM_FROUND_TO_NEAREST_INT |_MM_FROUND_NO_EXC)) {} + FP32Vec16 operator*(const FP32Vec16 &b) const { return FP32Vec16(_mm512_mul_ps(reg, b.reg)); } @@ -333,6 +358,16 @@ struct FP32Vec16 : public Vec { return FP32Vec16(_mm512_mask_max_ps(reg, mask, reg, b.reg)); } + FP32Vec16 min(const FP32Vec16& b) const { + return FP32Vec16(_mm512_min_ps(reg, b.reg)); + } + + FP32Vec16 min(const FP32Vec16& b, const int elem_num) const { + constexpr uint32_t M = 0xFFFFFFFF; + __mmask16 mask = _cvtu32_mask16(M >> (32 - elem_num)); + return FP32Vec16(_mm512_mask_min_ps(reg, mask, reg, b.reg)); + } + FP32Vec16 abs() const { return FP32Vec16(_mm512_abs_ps(reg)); } @@ -341,6 +376,8 @@ struct FP32Vec16 : public Vec { float reduce_max() const { return _mm512_reduce_max_ps(reg); } + float reduce_min() const { return _mm512_reduce_min_ps(reg); } + template float reduce_sub_sum(int idx) { static_assert(VEC_ELEM_NUM % group_size == 0); constexpr uint32_t base_mask = (0xFFFF >> (16 - group_size)); diff --git a/csrc/cpu/quant.cpp b/csrc/cpu/quant.cpp index 2d7abe6145fee..b493fd793818a 100644 --- a/csrc/cpu/quant.cpp +++ b/csrc/cpu/quant.cpp @@ -5,25 +5,29 @@ namespace { template struct KernelVecType { using load_vec_type = void; + using azp_adj_load_vec_type = void; using cvt_vec_type = void; }; template <> struct KernelVecType { using load_vec_type = vec_op::FP32Vec16; + using azp_adj_load_vec_type = vec_op::INT32Vec16; using cvt_vec_type = vec_op::FP32Vec16; }; template <> struct KernelVecType { using load_vec_type = vec_op::BF16Vec16; + using azp_adj_load_vec_type = vec_op::INT32Vec16; using cvt_vec_type = vec_op::FP32Vec16; }; #ifdef __AVX512F__ -template +template void static_scaled_int8_quant_impl(const scalar_t* input, int8_t* output, - const float* scale, const int num_tokens, + const float* scale, const int32_t* azp, + const int num_tokens, const int hidden_size) { using load_vec_t = typename KernelVecType::load_vec_type; using cvt_vec_t = typename KernelVecType::cvt_vec_type; @@ -37,62 +41,110 @@ void static_scaled_int8_quant_impl(const scalar_t* input, int8_t* output, const cvt_vec_t i8_min_vec(i8_min); const cvt_vec_t i8_max_vec(i8_max); + cvt_vec_t zp_vec; + if constexpr (AZP) { + zp_vec = cvt_vec_t(static_cast(*azp)); + } + #pragma omp parallel for for (int i = 0; i < num_tokens; ++i) { int j = 0; for (; j < hidden_size - vec_elem_num; j += vec_elem_num) { load_vec_t elems(input + i * hidden_size + j); cvt_vec_t elems_fp32(elems); - elems_fp32 = (elems_fp32 * inv_scale).clamp(i8_min_vec, i8_max_vec); + elems_fp32 = elems_fp32 * inv_scale; + + if constexpr (AZP) { + elems_fp32 = elems_fp32 + zp_vec; + } + + elems_fp32 = elems_fp32.clamp(i8_min_vec, i8_max_vec); vec_op::INT8Vec16 elems_int8(elems_fp32); elems_int8.save(output + i * hidden_size + j); } load_vec_t elems(input + i * hidden_size + j); cvt_vec_t elems_fp32(elems); - elems_fp32 = (elems_fp32 * inv_scale).clamp(i8_min_vec, i8_max_vec); - vec_op::INT8Vec16 elems_int8(elems_fp32); + elems_fp32 = elems_fp32 * inv_scale; - if (j + vec_elem_num == hidden_size) { - elems_int8.save(output + i * hidden_size + j); - } else { - elems_int8.save(output + i * hidden_size + j, hidden_size - j); + if constexpr (AZP) { + elems_fp32 = elems_fp32 + zp_vec; } + + elems_fp32 = elems_fp32.clamp(i8_min_vec, i8_max_vec); + vec_op::INT8Vec16 elems_int8(elems_fp32); + elems_int8.save(output + i * hidden_size + j, hidden_size - j); } } -template +template void dynamic_scaled_int8_quant_impl(const scalar_t* input, int8_t* output, - float* scale, const int num_tokens, + float* scale, int32_t* azp, + const int num_tokens, const int hidden_size) { using load_vec_t = typename KernelVecType::load_vec_type; using cvt_vec_t = typename KernelVecType::cvt_vec_type; constexpr int vec_elem_num = load_vec_t::VEC_ELEM_NUM; + constexpr float i8_min = + static_cast(std::numeric_limits::min()); + constexpr float i8_max = + static_cast(std::numeric_limits::max()); + const cvt_vec_t i8_min_vec(i8_min); + const cvt_vec_t i8_max_vec(i8_max); + #pragma omp parallel for for (int i = 0; i < num_tokens; ++i) { - cvt_vec_t max_abs(0.0); + cvt_vec_t max_value(std::numeric_limits::lowest()); + cvt_vec_t min_value(std::numeric_limits::max()); { int j = 0; for (; j < hidden_size - vec_elem_num; j += vec_elem_num) { load_vec_t elems(input + i * hidden_size + j); cvt_vec_t elems_fp32(elems); - max_abs = max_abs.max(elems_fp32.abs()); + if constexpr (AZP) { + max_value = max_value.max(elems_fp32); + min_value = min_value.min(elems_fp32); + } else { + max_value = max_value.max(elems_fp32.abs()); + } } load_vec_t elems(input + i * hidden_size + j); cvt_vec_t elems_fp32(elems); if (j + vec_elem_num == hidden_size) { - max_abs = max_abs.max(elems_fp32.abs()); + if constexpr (AZP) { + max_value = max_value.max(elems_fp32); + min_value = min_value.min(elems_fp32); + } else { + max_value = max_value.max(elems_fp32.abs()); + } } else { - max_abs = max_abs.max(elems_fp32.abs(), hidden_size - j); + if constexpr (AZP) { + max_value = max_value.max(elems_fp32, hidden_size - j); + min_value = min_value.min(elems_fp32, hidden_size - j); + } else { + max_value = max_value.max(elems_fp32.abs(), hidden_size - j); + } } } - float scale_val = max_abs.reduce_max() / 127.0f; - scale[i] = scale_val; + float scale_val, azp_val; + if constexpr (AZP) { + float max_scalar = max_value.reduce_max(); + float min_scalar = min_value.reduce_min(); + scale_val = (max_scalar - min_scalar) / 255.0f; + azp_val = std::nearbyint(-128.0f - min_scalar / scale_val); + azp[i] = static_cast(azp_val); + scale[i] = scale_val; + } else { + scale_val = max_value.reduce_max() / 127.0f; + scale[i] = scale_val; + } + const cvt_vec_t inv_scale(1.0 / scale_val); + const cvt_vec_t azp_vec(azp_val); { int j = 0; @@ -100,6 +152,11 @@ void dynamic_scaled_int8_quant_impl(const scalar_t* input, int8_t* output, load_vec_t elems(input + i * hidden_size + j); cvt_vec_t elems_fp32(elems); elems_fp32 = (elems_fp32 * inv_scale); + + if constexpr (AZP) { + elems_fp32 = elems_fp32 + azp_vec; + } + elems_fp32 = elems_fp32.clamp(i8_min_vec, i8_max_vec); vec_op::INT8Vec16 elems_int8(elems_fp32); elems_int8.save(output + i * hidden_size + j); } @@ -107,34 +164,111 @@ void dynamic_scaled_int8_quant_impl(const scalar_t* input, int8_t* output, load_vec_t elems(input + i * hidden_size + j); cvt_vec_t elems_fp32(elems); elems_fp32 = (elems_fp32 * inv_scale); - vec_op::INT8Vec16 elems_int8(elems_fp32); - if (j + vec_elem_num == hidden_size) { - elems_int8.save(output + i * hidden_size + j); - } else { - elems_int8.save(output + i * hidden_size + j, hidden_size - j); + if constexpr (AZP) { + elems_fp32 = elems_fp32 + azp_vec; } + elems_fp32 = elems_fp32.clamp(i8_min_vec, i8_max_vec); + vec_op::INT8Vec16 elems_int8(elems_fp32); + elems_int8.save(output + i * hidden_size + j, hidden_size - j); } } } -template -void dynamic_output_scale_impl(const float* input, scalar_t* output, - const float* scale, const scalar_t* bias, - const int num_tokens, const int hidden_size) { +template +void static_quant_epilogue(const float* input, scalar_t* output, + const float a_scale, const float* b_scale, + const int32_t* azp_with_adj, const int num_tokens, + const int hidden_size) { CPU_KERNEL_GUARD_IN(dynamic_output_scale_impl) using load_vec_t = typename KernelVecType::load_vec_type; + using azp_adj_load_vec_t = + typename KernelVecType::azp_adj_load_vec_type; + using cvt_vec_t = typename KernelVecType::cvt_vec_type; + constexpr int vec_elem_num = load_vec_t::VEC_ELEM_NUM; + + #pragma omp parallel for + for (int i = 0; i < num_tokens; ++i) { + cvt_vec_t a_scale_vec(a_scale); + cvt_vec_t b_scale_vec(*b_scale); + cvt_vec_t scale_vec = a_scale_vec * b_scale_vec; + + int j = 0; + for (; j < hidden_size - vec_elem_num; j += vec_elem_num) { + cvt_vec_t elems_fp32(input + i * hidden_size + j); + azp_adj_load_vec_t azp_adj_vec(azp_with_adj + j); + cvt_vec_t azp_adj_fp32(azp_adj_vec); + + if constexpr (PerChannel) { + b_scale_vec = cvt_vec_t(b_scale + j); + scale_vec = b_scale_vec * a_scale_vec; + } + + elems_fp32 = elems_fp32 - scale_vec * azp_adj_fp32; + + load_vec_t elems_out(elems_fp32); + elems_out.save(output + i * hidden_size + j); + } + + cvt_vec_t elems_fp32(input + i * hidden_size + j); + azp_adj_load_vec_t azp_adj_vec(azp_with_adj + j); + cvt_vec_t azp_adj_fp32(azp_adj_vec); + + if constexpr (PerChannel) { + b_scale_vec = cvt_vec_t(b_scale + j); + scale_vec = b_scale_vec * a_scale_vec; + } + + elems_fp32 = elems_fp32 - scale_vec * azp_adj_fp32; + + load_vec_t elems_out(elems_fp32); + elems_out.save(output + i * hidden_size + j, hidden_size - j); + } +} + +template +void dynamic_quant_epilogue(const float* input, scalar_t* output, + const float* a_scale, const float* b_scale, + const int32_t* azp, const int32_t* azp_adj, + const scalar_t* bias, const int num_tokens, + const int hidden_size) { + CPU_KERNEL_GUARD_IN(dynamic_quant_epilogue) + using load_vec_t = typename KernelVecType::load_vec_type; + using azp_adj_load_vec_t = + typename KernelVecType::azp_adj_load_vec_type; using cvt_vec_t = typename KernelVecType::cvt_vec_type; constexpr int vec_elem_num = load_vec_t::VEC_ELEM_NUM; #pragma omp parallel for for (int i = 0; i < num_tokens; ++i) { int j = 0; - cvt_vec_t token_scale_vec(scale[i]); + cvt_vec_t token_scale_vec(a_scale[i]); + cvt_vec_t token_zp_scale_vec; + if constexpr (AZP) { + float zp_scale_val = a_scale[i] * static_cast(azp[i]); + if constexpr (!PerChannel) { + zp_scale_val *= *b_scale; + } + token_zp_scale_vec = cvt_vec_t(zp_scale_val); + } + for (; j < hidden_size - vec_elem_num; j += vec_elem_num) { cvt_vec_t elems_fp32(input + i * hidden_size + j); elems_fp32 = elems_fp32 * token_scale_vec; + if constexpr (AZP) { + azp_adj_load_vec_t azp_adj_vec(azp_adj + j); + cvt_vec_t azp_adj_fp32(azp_adj_vec); + azp_adj_fp32 = azp_adj_fp32 * token_zp_scale_vec; + + if constexpr (PerChannel) { + cvt_vec_t b_scale_vec(b_scale + j); + azp_adj_fp32 = azp_adj_fp32 * b_scale_vec; + } + + elems_fp32 = elems_fp32 - azp_adj_fp32; + } + if constexpr (Bias) { load_vec_t bias_vec(bias + j); cvt_vec_t bias_vec_fp32(bias_vec); @@ -148,6 +282,19 @@ void dynamic_output_scale_impl(const float* input, scalar_t* output, cvt_vec_t elems_fp32(input + i * hidden_size + j); elems_fp32 = elems_fp32 * token_scale_vec; + if constexpr (AZP) { + azp_adj_load_vec_t azp_adj_vec(azp_adj + j); + cvt_vec_t azp_adj_fp32(azp_adj_vec); + azp_adj_fp32 = azp_adj_fp32 * token_zp_scale_vec; + + if constexpr (PerChannel) { + cvt_vec_t b_scale_vec(b_scale + j); + azp_adj_fp32 = azp_adj_fp32 * b_scale_vec; + } + + elems_fp32 = elems_fp32 - azp_adj_fp32; + } + if constexpr (Bias) { load_vec_t bias_vec(bias + j); cvt_vec_t bias_vec_fp32(bias_vec); @@ -155,32 +302,41 @@ void dynamic_output_scale_impl(const float* input, scalar_t* output, } load_vec_t elems_out(elems_fp32); - - if (j + vec_elem_num == hidden_size) { - elems_out.save(output + i * hidden_size + j); - } else { - elems_out.save(output + i * hidden_size + j, hidden_size - j); - } + elems_out.save(output + i * hidden_size + j, hidden_size - j); } } #else template void static_scaled_int8_quant_impl(const scalar_t* input, int8_t* output, - const float* scale, const int num_tokens, + const float* scale, const int32_t* azp, + const int num_tokens, const int hidden_size) { TORCH_CHECK(false, "static_scaled_int8_quant_impl requires AVX512 support.") } template void dynamic_scaled_int8_quant_impl(const scalar_t* input, int8_t* output, - float* scale, const int num_tokens, + float* scale, int32_t* azp, + const int num_tokens, const int hidden_size) { TORCH_CHECK(false, "dynamic_scaled_int8_quant_impl requires AVX512 support.") } +template +void static_quant_epilogue(const float* input, scalar_t* output, + const float a_scale, const float* b_scale, + const int32_t* azp_with_adj, const int num_tokens, + const int hidden_size) { + TORCH_CHECK(false, "static_quant_epilogue requires AVX512 support.") +} + template -void dynamic_output_scale_impl() { - TORCH_CHECK(false, "dynamic_output_scale_impl requires AVX512 support.") +void dynamic_quant_epilogue(const float* input, scalar_t* output, + const float* a_scale, const float* b_scale, + const int32_t* azp, const int32_t* azp_with_adj, + const scalar_t* bias, const int num_tokens, + const int hidden_size) { + TORCH_CHECK(false, "dynamic_quant_epilogue requires AVX512 support.") } #endif } // namespace @@ -214,39 +370,52 @@ void int8_scaled_mm(torch::Tensor& c, // [M, OC], row-major bias->dim() == 1); } - VLLM_DISPATCH_FLOATING_TYPES(c.scalar_type(), "cutlass_scaled_mm", [&] { + VLLM_DISPATCH_FLOATING_TYPES(c.scalar_type(), "int8_scaled_mm", [&] { if (a_scales.numel() != 1) { // per-token // Note: oneDNN doesn't support per-token activation quantization + // Ideally we want to fuse the GEMM and the scale procedure with oneDNN + // JIT, the intermediate data is cached in registers or L1. But for now + // the oneDNN GEMM code generation only supports two quantization + // patterns: per-tensor or per-output-channel of weight. + // So we have to apply the per-token scale with a 'epilogue'. In C=s_a * + // s_b * (A@B) + bias, the C_inter = s_b * (A@B) is computed by oneDNN + // GEMM, then the per-token scale (and bias) is applied with the epilogue + // C=s_a * C_inter + bias. torch::Tensor tmp_fp32_out = torch::empty_like(c, ::at::ScalarType::Float); - DNNLPrimitiveHelper::gemm_s8s8_jit( + // Compute C_inter=s_b * (A@B) + DNNLPrimitiveHelper::gemm_s8s8_jit( a.data_ptr(), b.data_ptr(), - tmp_fp32_out.data_ptr(), (void*)(0), a.size(0), b.size(1), - a.size(1), (float*)(0), b_scales.data_ptr(), 0, - b_scales.numel()); + tmp_fp32_out.data_ptr(), nullptr, a.size(0), b.size(1), + a.size(1), nullptr, b_scales.data_ptr(), 0, b_scales.numel()); if (bias.has_value()) { - dynamic_output_scale_impl( + // Compute C=s_a * C_inter + bias + dynamic_quant_epilogue( tmp_fp32_out.data_ptr(), c.data_ptr(), - a_scales.data_ptr(), bias->data_ptr(), c.size(0), - c.size(1)); + a_scales.data_ptr(), nullptr, nullptr, nullptr, + bias->data_ptr(), c.size(0), c.size(1)); } else { - dynamic_output_scale_impl( + // Compute C=s_a * C_inter + dynamic_quant_epilogue( tmp_fp32_out.data_ptr(), c.data_ptr(), - a_scales.data_ptr(), (scalar_t*)(0), c.size(0), c.size(1)); + a_scales.data_ptr(), nullptr, nullptr, nullptr, nullptr, + c.size(0), c.size(1)); } } else { // per-tensor if (bias.has_value()) { + // Compute C=s_a * s_b * (A@B) + bias DNNLPrimitiveHelper::gemm_s8s8_jit( a.data_ptr(), b.data_ptr(), c.data_ptr(), bias->data_ptr(), a.size(0), b.size(1), a.size(1), a_scales.data_ptr(), b_scales.data_ptr(), a_scales.numel(), b_scales.numel()); } else { - DNNLPrimitiveHelper::gemm_s8s8_jit( + // Compute C=s_a * s_b * (A@B) + DNNLPrimitiveHelper::gemm_s8s8_jit( a.data_ptr(), b.data_ptr(), c.data_ptr(), - (void*)(0), a.size(0), b.size(1), a.size(1), + nullptr, a.size(0), b.size(1), a.size(1), a_scales.data_ptr(), b_scales.data_ptr(), a_scales.numel(), b_scales.numel()); } @@ -254,6 +423,127 @@ void int8_scaled_mm(torch::Tensor& c, // [M, OC], row-major }); } +void int8_scaled_mm_azp(torch::Tensor& c, // [M, OC], row-major + const torch::Tensor& a, // [M, IC], row-major + const torch::Tensor& b, // [IC, OC], column-major + const torch::Tensor& a_scales, // [1] or [M] + const torch::Tensor& b_scales, // [1] or [OC] + const torch::Tensor& azp_adj, // [OC] + const c10::optional& azp, // [1] or [M] + const c10::optional& bias // [OC] +) { + CPU_KERNEL_GUARD_IN(cutlass_scaled_mm_azp) + // Checks for conformality + TORCH_CHECK(a.dtype() == torch::kInt8 && b.dtype() == torch::kInt8, + "int8_scaled_mm_azp only supports INT8 inputs.") + TORCH_CHECK(a.dim() == 2 && b.dim() == 2 && c.dim() == 2); + TORCH_CHECK(c.size(0) == a.size(0) && a.size(1) == b.size(0) && + b.size(1) == c.size(1)); + TORCH_CHECK(a_scales.numel() == 1 || a_scales.numel() == a.size(0)); + TORCH_CHECK(b_scales.numel() == 1 || b_scales.numel() == b.size(1)); + + // Check for strides and alignment + TORCH_CHECK(a.stride(1) == 1 && c.stride(1) == 1); // Row-major + TORCH_CHECK(b.stride(0) == 1); // Column-major + TORCH_CHECK(c.stride(0) % 16 == 0 && + b.stride(1) % 16 == 0); // 16 Byte Alignment + TORCH_CHECK(a_scales.is_contiguous() && b_scales.is_contiguous()); + + if (bias) { + TORCH_CHECK(bias->numel() == b.size(1) && bias->is_contiguous()); + } + if (azp) { + TORCH_CHECK(azp->numel() == a.size(0) && azp->is_contiguous()); + } + TORCH_CHECK(azp_adj.numel() == b.size(1) && azp_adj.is_contiguous()); + + // azp & bias types + TORCH_CHECK(azp_adj.dtype() == torch::kInt32); + TORCH_CHECK(!azp || azp->dtype() == torch::kInt32); + TORCH_CHECK(!bias || bias->dtype() == c.dtype(), + "currently bias dtype must match output dtype ", c.dtype()); + + VLLM_DISPATCH_FLOATING_TYPES(c.scalar_type(), "int8_scaled_mm_azp", [&] { + torch::Tensor tmp_fp32_out = torch::empty_like(c, ::at::ScalarType::Float); + if (a_scales.numel() != 1) { + // per-token + // Note: oneDNN doesn't support per-token activation quantization + // Compute C_inter=s_b * (A@B) + DNNLPrimitiveHelper::gemm_s8s8_jit( + a.data_ptr(), b.data_ptr(), + tmp_fp32_out.data_ptr(), nullptr, a.size(0), b.size(1), + a.size(1), nullptr, b_scales.data_ptr(), 0, b_scales.numel()); + if (bias.has_value()) { + // Compute C=s_a * C_inter - s_a * s_b * azp * azp_adj + bias + if (b_scales.numel() != 1) { + // Per-Channel + dynamic_quant_epilogue( + tmp_fp32_out.data_ptr(), c.data_ptr(), + a_scales.data_ptr(), b_scales.data_ptr(), + azp->data_ptr(), azp_adj.data_ptr(), + bias->data_ptr(), c.size(0), c.size(1)); + } else { + // Per-Tensor + dynamic_quant_epilogue( + tmp_fp32_out.data_ptr(), c.data_ptr(), + a_scales.data_ptr(), b_scales.data_ptr(), + azp->data_ptr(), azp_adj.data_ptr(), + bias->data_ptr(), c.size(0), c.size(1)); + } + } else { + // Compute C=s_a * C_inter - s_a * s_b * azp * azp_adj + if (b_scales.numel() != 1) { + // Per-Channel + dynamic_quant_epilogue( + tmp_fp32_out.data_ptr(), c.data_ptr(), + a_scales.data_ptr(), b_scales.data_ptr(), + azp->data_ptr(), azp_adj.data_ptr(), nullptr, + c.size(0), c.size(1)); + } else { + // Per-Tensor + dynamic_quant_epilogue( + tmp_fp32_out.data_ptr(), c.data_ptr(), + a_scales.data_ptr(), b_scales.data_ptr(), + azp->data_ptr(), azp_adj.data_ptr(), nullptr, + c.size(0), c.size(1)); + } + } + } else { + // per-tensor + if (bias.has_value()) { + // Compute C_inter=s_a * s_b * (A@B) + bias + DNNLPrimitiveHelper::gemm_s8s8_jit( + a.data_ptr(), b.data_ptr(), + tmp_fp32_out.data_ptr(), bias->data_ptr(), + a.size(0), b.size(1), a.size(1), a_scales.data_ptr(), + b_scales.data_ptr(), a_scales.numel(), b_scales.numel()); + } else { + // Compute C_inter=s_a * s_b * (A@B) + DNNLPrimitiveHelper::gemm_s8s8_jit( + a.data_ptr(), b.data_ptr(), + tmp_fp32_out.data_ptr(), nullptr, a.size(0), b.size(1), + a.size(1), a_scales.data_ptr(), b_scales.data_ptr(), + a_scales.numel(), b_scales.numel()); + } + + // Compute C=C_inter - s_a * s_b * azp_adj + if (b_scales.numel() != 1) { + // Per-Channel + static_quant_epilogue( + tmp_fp32_out.data_ptr(), c.data_ptr(), + *a_scales.data_ptr(), b_scales.data_ptr(), + azp_adj.data_ptr(), a.size(0), b.size(1)); + } else { + // Per-Tensor + static_quant_epilogue( + tmp_fp32_out.data_ptr(), c.data_ptr(), + *a_scales.data_ptr(), b_scales.data_ptr(), + azp_adj.data_ptr(), a.size(0), b.size(1)); + } + } + }); +} + // static-per-tensor quantization. void static_scaled_int8_quant(torch::Tensor& out, // [..., hidden_size] const torch::Tensor& input, // [..., hidden_size] @@ -263,15 +553,22 @@ void static_scaled_int8_quant(torch::Tensor& out, // [..., hidden_size] TORCH_CHECK(input.is_contiguous()); TORCH_CHECK(out.is_contiguous()); TORCH_CHECK(scale.numel() == 1); - TORCH_CHECK(!azp.has_value(), "Zero point is not supported on CPU."); + TORCH_CHECK(!azp.has_value() || azp->numel() == 1); const int hidden_size = input.size(-1); const int num_tokens = input.numel() / hidden_size; VLLM_DISPATCH_FLOATING_TYPES( input.scalar_type(), "static_scaled_int8_quant_impl", [&] { - static_scaled_int8_quant_impl( - input.data_ptr(), out.data_ptr(), - scale.data_ptr(), num_tokens, hidden_size); + if (azp.has_value()) { + static_scaled_int8_quant_impl( + input.data_ptr(), out.data_ptr(), + scale.data_ptr(), azp->data_ptr(), num_tokens, + hidden_size); + } else { + static_scaled_int8_quant_impl( + input.data_ptr(), out.data_ptr(), + scale.data_ptr(), nullptr, num_tokens, hidden_size); + } }); } @@ -284,14 +581,20 @@ void dynamic_scaled_int8_quant( CPU_KERNEL_GUARD_IN(dynamic_scaled_int8_quant) TORCH_CHECK(input.is_contiguous()); TORCH_CHECK(out.is_contiguous()); - TORCH_CHECK(!azp.has_value(), "Zero point is not supported on CPU."); int const hidden_size = input.size(-1); int const num_tokens = input.numel() / hidden_size; VLLM_DISPATCH_FLOATING_TYPES( input.scalar_type(), "dynamic_scaled_int8_quant_impl", [&] { - dynamic_scaled_int8_quant_impl( - input.data_ptr(), out.data_ptr(), - scale.data_ptr(), num_tokens, hidden_size); + if (azp.has_value()) { + dynamic_scaled_int8_quant_impl( + input.data_ptr(), out.data_ptr(), + scale.data_ptr(), azp->data_ptr(), num_tokens, + hidden_size); + } else { + dynamic_scaled_int8_quant_impl( + input.data_ptr(), out.data_ptr(), + scale.data_ptr(), nullptr, num_tokens, hidden_size); + } }); } diff --git a/csrc/cpu/torch_bindings.cpp b/csrc/cpu/torch_bindings.cpp index ab697e3e6aef7..03beefbc6de7d 100644 --- a/csrc/cpu/torch_bindings.cpp +++ b/csrc/cpu/torch_bindings.cpp @@ -11,6 +11,13 @@ void int8_scaled_mm(torch::Tensor& c, const torch::Tensor& a, const torch::Tensor& b_scales, const c10::optional& bias); +void int8_scaled_mm_azp(torch::Tensor& c, const torch::Tensor& a, + const torch::Tensor& b, const torch::Tensor& a_scales, + const torch::Tensor& b_scales, + const torch::Tensor& azp_adj, + const c10::optional& azp, + const c10::optional& bias); + TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) { // vLLM custom ops @@ -111,6 +118,14 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) { " Tensor b, Tensor a_scales," " Tensor b_scales, Tensor? bias) -> ()"); ops.impl("cutlass_scaled_mm", torch::kCPU, &int8_scaled_mm); + // w8a8 GEMM, supporting asymmetric per-tensor or per-row/column + // quantization. + ops.def( + "cutlass_scaled_mm_azp(Tensor! out, Tensor a," + " Tensor b, Tensor a_scales," + " Tensor b_scales, Tensor azp_adj," + " Tensor? azp, Tensor? bias) -> ()"); + ops.impl("cutlass_scaled_mm_azp", torch::kCPU, &int8_scaled_mm_azp); #endif } diff --git a/csrc/mamba/causal_conv1d/causal_conv1d.cu b/csrc/mamba/causal_conv1d/causal_conv1d.cu index 30831efdfa1a2..498d069c05f0d 100644 --- a/csrc/mamba/causal_conv1d/causal_conv1d.cu +++ b/csrc/mamba/causal_conv1d/causal_conv1d.cu @@ -55,6 +55,7 @@ void set_conv_params_fwd(ConvParamsBase ¶ms, const at::Tensor out, const c10::optional& bias, bool silu_activation, + int64_t pad_slot_id, const c10::optional& query_start_loc = std::nullopt, const c10::optional& cache_indices = std::nullopt, const c10::optional& has_initial_state = std::nullopt) { @@ -66,6 +67,7 @@ void set_conv_params_fwd(ConvParamsBase ¶ms, params.dim = dim; params.seqlen = seqlen; params.width = width; + params.pad_slot_id = pad_slot_id; params.silu_activation = silu_activation; @@ -90,14 +92,16 @@ void set_conv_params_fwd(ConvParamsBase ¶ms, } -at::Tensor -causal_conv1d_fwd(const at::Tensor &x, const at::Tensor &weight, +void causal_conv1d_fwd(const at::Tensor &x, const at::Tensor &weight, const c10::optional &bias_, const c10::optional &conv_states, const c10::optional &query_start_loc, const c10::optional &cache_indices, const c10::optional &has_initial_state, - bool silu_activation) { + bool silu_activation, + // used to identify padding entries if cache_indices provided + // in case of padding, the kernel will return early + int64_t pad_slot_id) { auto input_type = x.scalar_type(); auto weight_type = weight.scalar_type(); TORCH_CHECK(input_type == at::ScalarType::Float || input_type == at::ScalarType::Half || input_type == at::ScalarType::BFloat16); @@ -153,12 +157,13 @@ causal_conv1d_fwd(const at::Tensor &x, const at::Tensor &weight, CHECK_SHAPE(cache_indices_, batch_size); } - at::Tensor out = torch::empty_like(x); + at::Tensor out = x; ConvParamsBase params; set_conv_params_fwd(params, batch_size, dim, seqlen, width, x, weight, out, bias_, silu_activation, + pad_slot_id, query_start_loc, cache_indices, has_initial_state @@ -183,18 +188,19 @@ causal_conv1d_fwd(const at::Tensor &x, const at::Tensor &weight, DISPATCH_WTYPE_ITYPE_FLOAT_AND_HALF_AND_BF16(x.scalar_type(), "causal_conv1d_fwd", [&] { causal_conv1d_fwd_cuda(params, stream); }); - return out; } -at::Tensor -causal_conv1d_update(const at::Tensor &x, +void causal_conv1d_update(const at::Tensor &x, const at::Tensor &conv_state, const at::Tensor &weight, const c10::optional &bias_, bool silu_activation, const c10::optional &cache_seqlens_, - const c10::optional &conv_state_indices_) { + const c10::optional &conv_state_indices_, + // used to identify padding entries if cache_indices provided + // in case of padding, the kernel will return early + int64_t pad_slot_id) { auto input_type = x.scalar_type(); auto weight_type = weight.scalar_type(); TORCH_CHECK(input_type == at::ScalarType::Float || input_type == at::ScalarType::Half || input_type == at::ScalarType::BFloat16); @@ -227,12 +233,13 @@ causal_conv1d_update(const at::Tensor &x, CHECK_SHAPE(bias, dim); } - at::Tensor out = torch::empty_like(x); + at::Tensor out = x; ConvParamsBase params; set_conv_params_fwd(params, batch_size, dim, seqlen, width, x, weight, out, bias_, - silu_activation); + silu_activation, + pad_slot_id); params.conv_state_ptr = conv_state.data_ptr(); params.conv_state_len = conv_state_len; // All stride are in elements, not bytes. @@ -274,7 +281,6 @@ causal_conv1d_update(const at::Tensor &x, DISPATCH_WTYPE_ITYPE_FLOAT_AND_HALF_AND_BF16(x.scalar_type(), "causal_conv1d_update", [&] { causal_conv1d_update_cuda(params, stream); }); - return out; } template @@ -340,7 +346,10 @@ void causal_conv1d_fwd_kernel(ConvParamsBase params) { int* cache_indices = params.cache_indices_ptr == nullptr ? nullptr : reinterpret_cast(params.cache_indices_ptr); int cache_index = cache_indices == nullptr ? batch_id : cache_indices[batch_id]; - + // cache_index == params.pad_slot_id is defined as padding, so we exit early + if (cache_index == params.pad_slot_id){ + return; + } input_t *conv_states = params.conv_states_ptr == nullptr ? nullptr : reinterpret_cast(params.conv_states_ptr) + cache_index * params.conv_states_batch_stride + channel_id * params.conv_states_c_stride; @@ -409,6 +418,31 @@ void causal_conv1d_fwd_kernel(ConvParamsBase params) { typename Ktraits::BlockStoreT(smem_store).Store(out, out_vals_store, seqlen - chunk * kChunkSize); } out += kChunkSize; + + int final_state_position = ((seqlen - (kWidth - 1)) - (n_chunks - 1) * kChunkSize); + // in case the final state is separated between the last "smem_exchange" and + // and the one before it (chunk = n_chunks - 1 and chunk = n_chunks - 2), + // (which occurs when `final_state_position` is a non-positivie index) + // we load the correct data from smem_exchange from both chunks, the last chunk iteration and the one before it + if (final_state_position < 0 && seqlen > kWidth){ + input_t vals_load[kNElts] = {0}; + if ((chunk == n_chunks - 2) && (tidx == kNThreads - 1)){ + // chunk = n_chunks - 2, a segment of the final state sits in the last index + reinterpret_cast(vals_load)[0] = smem_exchange[kNThreads - 1]; + #pragma unroll + for (int w = 0; w < -final_state_position; ++w){ + conv_states[w] = vals_load[kNElts + final_state_position + w]; + } + } + if ((chunk == n_chunks - 1) && tidx == 0){ + // chunk = n_chunks - 1, the second segment of the final state first positions + reinterpret_cast(vals_load)[0] = smem_exchange[0]; + for (int w = -final_state_position; w < kWidth - 1; ++w){ + conv_states[w] = vals_load[w + final_state_position]; + } + return; + } + } } // Final state is stored in the smem_exchange last token slot, // in case seqlen < kWidth, we would need to take the final state from the @@ -437,9 +471,14 @@ void causal_conv1d_fwd_kernel(ConvParamsBase params) { } else { // in case the final state is in between the threads data - reinterpret_cast(x_vals_load)[1] = smem_exchange[last_thread + 1]; - reinterpret_cast(x_vals_load)[0] = smem_exchange[last_thread]; const int offset = ((seqlen - (kWidth - 1)) % (kNElts)); + if ((offset + kWidth - 2) >= kNElts && (last_thread + 1 < kNThreads)){ + // In case last_thread == kNThreads - 1, accessing last_thread + 1 will result in a + // illegal access error on H100. + // Therefore, we access last_thread + 1, only if the final state data sits there + reinterpret_cast(x_vals_load)[1] = smem_exchange[last_thread + 1]; + } + reinterpret_cast(x_vals_load)[0] = smem_exchange[last_thread]; #pragma unroll for (int w = 0; w < kWidth - 1; ++w){ conv_states[w] = x_vals_load[offset + w ]; @@ -528,6 +567,10 @@ void causal_conv1d_update_kernel(ConvParamsBase params) { const int conv_state_batch_coord = params.conv_state_indices_ptr == nullptr ? batch_id : params.conv_state_indices_ptr[batch_id]; + // conv_state_batch_coord == params.pad_slot_id is defined as padding so we exit early + if (conv_state_batch_coord == params.pad_slot_id){ + return; + } input_t *conv_state = reinterpret_cast(params.conv_state_ptr) + conv_state_batch_coord * params.conv_state_batch_stride + channel_id * params.conv_state_c_stride; diff --git a/csrc/mamba/causal_conv1d/causal_conv1d.h b/csrc/mamba/causal_conv1d/causal_conv1d.h index 49e37ee4528be..e26684a2b98b8 100644 --- a/csrc/mamba/causal_conv1d/causal_conv1d.h +++ b/csrc/mamba/causal_conv1d/causal_conv1d.h @@ -13,6 +13,7 @@ struct ConvParamsBase { using index_t = uint32_t; int batch, dim, seqlen, width; + int64_t pad_slot_id; bool silu_activation; index_t x_batch_stride; diff --git a/csrc/mamba/mamba_ssm/selective_scan.h b/csrc/mamba/mamba_ssm/selective_scan.h index 580d0b2e17e74..563d2fe4ef65b 100644 --- a/csrc/mamba/mamba_ssm/selective_scan.h +++ b/csrc/mamba/mamba_ssm/selective_scan.h @@ -21,6 +21,7 @@ struct SSMParamsBase { int dim_ngroups_ratio; bool is_variable_B; bool is_variable_C; + int64_t pad_slot_id; bool delta_softplus; diff --git a/csrc/mamba/mamba_ssm/selective_scan_fwd.cu b/csrc/mamba/mamba_ssm/selective_scan_fwd.cu index 6b225b41d295d..71624696338d0 100644 --- a/csrc/mamba/mamba_ssm/selective_scan_fwd.cu +++ b/csrc/mamba/mamba_ssm/selective_scan_fwd.cu @@ -115,6 +115,10 @@ void selective_scan_fwd_kernel(SSMParamsBase params) { const int* cache_indices = params.cache_indices_ptr == nullptr ? nullptr : reinterpret_cast(params.cache_indices_ptr); const int cache_index = cache_indices == nullptr ? batch_id : cache_indices[batch_id]; + // cache_index == params.pad_slot_id is defined as padding, so we exit early + if (cache_index == params.pad_slot_id){ + return; + } input_t *u = reinterpret_cast(params.u_ptr) + sequence_start_index * params.u_batch_stride + dim_id * kNRows * params.u_d_stride; input_t *delta = reinterpret_cast(params.delta_ptr) + sequence_start_index * params.delta_batch_stride @@ -387,7 +391,6 @@ void set_ssm_params_fwd(SSMParamsBase ¶ms, const size_t seqlen, const size_t dstate, const size_t n_groups, - const size_t n_chunks, const bool is_variable_B, const bool is_variable_C, // device pointers @@ -407,7 +410,8 @@ void set_ssm_params_fwd(SSMParamsBase ¶ms, const c10::optional& query_start_loc, const c10::optional& cache_indices, const c10::optional& has_initial_state, - bool varlen) { + bool varlen, + int64_t pad_slot_id) { // Reset the parameters memset(¶ms, 0, sizeof(params)); @@ -417,8 +421,8 @@ void set_ssm_params_fwd(SSMParamsBase ¶ms, params.seqlen = seqlen; params.dstate = dstate; params.n_groups = n_groups; - params.n_chunks = n_chunks; params.dim_ngroups_ratio = dim / n_groups; + params.pad_slot_id = pad_slot_id; params.delta_softplus = delta_softplus; @@ -507,7 +511,10 @@ void selective_scan_fwd(const torch::Tensor &u, const torch::Tensor &delta, const c10::optional &query_start_loc, const c10::optional &cache_indices, const c10::optional &has_initial_state, - const torch::Tensor &ssm_states) { + const torch::Tensor &ssm_states, + // used to identify padding entries if cache_indices provided + // in case of padding, the kernel will return early + int64_t pad_slot_id) { auto input_type = u.scalar_type(); auto weight_type = A.scalar_type(); TORCH_CHECK(input_type == at::ScalarType::Float || input_type == at::ScalarType::Half || input_type == at::ScalarType::BFloat16); @@ -618,18 +625,14 @@ void selective_scan_fwd(const torch::Tensor &u, const torch::Tensor &delta, out_z = z; - const int n_chunks = (seqlen + 2048 - 1) / 2048; - // const int n_chunks = (seqlen + 1024 - 1) / 1024; - // at::Tensor out = torch::empty_like(u); // Right now u has BHL layout and delta has HBL layout, and we want out to have HBL layout at::Tensor out = delta; TORCH_CHECK(ssm_states.scalar_type() == input_type); TORCH_CHECK(ssm_states.is_cuda()); TORCH_CHECK(ssm_states.stride(-1) == 1); - CHECK_SHAPE(ssm_states, batch_size, dim, dstate); SSMParamsBase params; - set_ssm_params_fwd(params, batch_size, dim, seqlen, dstate, n_groups, n_chunks, is_variable_B, is_variable_C, + set_ssm_params_fwd(params, batch_size, dim, seqlen, dstate, n_groups, is_variable_B, is_variable_C, u, delta, A, B, C, out, z, out_z, D_, delta_bias_, @@ -639,7 +642,8 @@ void selective_scan_fwd(const torch::Tensor &u, const torch::Tensor &delta, query_start_loc, cache_indices, has_initial_state, - varlen + varlen, + pad_slot_id ); diff --git a/csrc/moe/marlin_kernels/marlin_moe_kernel.h b/csrc/moe/marlin_kernels/marlin_moe_kernel.h index 0bd3017226c94..a217401b3d7c2 100644 --- a/csrc/moe/marlin_kernels/marlin_moe_kernel.h +++ b/csrc/moe/marlin_kernels/marlin_moe_kernel.h @@ -38,6 +38,7 @@ using FragA = Vec; using FragB = Vec; using FragC = Vec; using FragS = Vec; // quantization scales +using FragZP = Vec; // Predicated asynchronous global->shared copy; used for inputs A where we apply // predication to handle batchsizes that are not multiples of 16. @@ -175,6 +176,46 @@ __device__ inline FragB dequant(int q) { return frag_b; } +template <> +__device__ inline FragB dequant(int q) { + const int LO = 0x000f000f; + const int HI = 0x00f000f0; + const int EX = 0x64006400; + // Guarantee that the `(a & b) | c` operations are LOP3s. + int lo = lop3<(0xf0 & 0xcc) | 0xaa>(q, LO, EX); + int hi = lop3<(0xf0 & 0xcc) | 0xaa>(q, HI, EX); + + const int SUB = 0x64006400; + const int MUL = 0x2c002c00; + const int ADD = 0xd400d400; + FragB frag_b; + frag_b[0] = __hsub2(*reinterpret_cast(&lo), + *reinterpret_cast(&SUB)); + frag_b[1] = __hfma2(*reinterpret_cast(&hi), + *reinterpret_cast(&MUL), + *reinterpret_cast(&ADD)); + return frag_b; +} + +template <> +__device__ inline FragB dequant(int q) { + static constexpr uint32_t mask_for_elt_01 = 0x5250; + static constexpr uint32_t mask_for_elt_23 = 0x5351; + static constexpr uint32_t start_byte_for_fp16 = 0x64646464; + + uint32_t lo = prmt(q); + uint32_t hi = prmt(q); + + static constexpr uint32_t I8s_TO_F16s_MAGIC_NUM = 0x64006400; + + FragB frag_b; + frag_b[0] = __hsub2(*reinterpret_cast(&lo), + *reinterpret_cast(&I8s_TO_F16s_MAGIC_NUM)); + frag_b[1] = __hsub2(*reinterpret_cast(&hi), + *reinterpret_cast(&I8s_TO_F16s_MAGIC_NUM)); + return frag_b; +} + // Multiply dequantized values by the corresponding quantization scale; used // only for grouped quantization. __device__ inline void scale(FragB& frag_b, FragS& frag_s, int i) { @@ -183,11 +224,10 @@ __device__ inline void scale(FragB& frag_b, FragS& frag_s, int i) { frag_b[1] = __hmul2(frag_b[1], s); } -// Given 2 floats multiply by 2 scales (halves) -__device__ inline void scale_float(float* c, FragS& s) { - __half* s_ptr = reinterpret_cast<__half*>(&s); - c[0] = __fmul_rn(c[0], __half2float(s_ptr[0])); - c[1] = __fmul_rn(c[1], __half2float(s_ptr[1])); +__device__ inline void sub_zp(FragB& frag_b, half2& frag_zp, int i) { + half2 zp = __half2half2(reinterpret_cast<__half*>(&frag_zp)[i]); + frag_b[0] = __hsub2(frag_b[0], zp); + frag_b[1] = __hsub2(frag_b[1], zp); } // Same as above, but for act_order (each K is multiplied individually) @@ -205,6 +245,13 @@ __device__ inline void scale4(FragB& frag_b, FragS& frag_s_1, FragS& frag_s_2, frag_b[1] = __hmul2(frag_b[1], s_val_3_4); } +// Given 2 floats multiply by 2 scales (halves) +__device__ inline void scale_float(float* c, FragS& s) { + __half* s_ptr = reinterpret_cast<__half*>(&s); + c[0] = __fmul_rn(c[0], __half2float(s_ptr[0])); + c[1] = __fmul_rn(c[1], __half2float(s_ptr[1])); +} + // Wait until barrier reaches `count`, then lock for current threadblock. __device__ inline void barrier_acquire(int* lock, int count) { if (threadIdx.x == 0) { @@ -248,10 +295,11 @@ template shared // fetch pipeline const bool has_act_order, // whether act_order is enabled + const bool has_zp, // whether zero-points are enabled const int group_blocks = -1 // number of consecutive 16x16 blocks // with a separate quantization scale > -__device__ inline void MarlinMoESingle( +__device__ void MarlinMoESingle( const int4* __restrict__ A, // fp16 input matrix of shape mxk const int4* __restrict__ B, // 4bit quantized weight matrix of shape kxn int4* __restrict__ C, // fp16 output buffer of shape mxn @@ -259,6 +307,8 @@ __device__ inline void MarlinMoESingle( const float* __restrict__ topk_weights, // float topk weights const int4* __restrict__ scales_ptr, // fp16 quantization scales of shape // (k/groupsize)xn + const int4* __restrict__ zp_ptr, // 4bit packed zero-points of shape + // (k/groupsize)x(n/pack_factor) const int* __restrict__ g_idx, // int32 group indices of shape k const int* __restrict__ expert_offsets, int num_groups, // number of scale groups per output channel @@ -400,8 +450,12 @@ __device__ inline void MarlinMoESingle( int tb_n_warps = thread_n_blocks / 4; int act_s_col_tb_stride = act_s_col_warp_stride * tb_n_warps; - constexpr int sorted_sh_stride = threads; - constexpr int sorted_gl_stride = threads; + // Zero-points sizes/strides + int zp_gl_stride = (prob_n / pack_factor) / 4; + constexpr int zp_sh_stride = ((16 * thread_n_blocks) / pack_factor) / 4; + constexpr int zp_tb_groups = s_tb_groups; + constexpr int zp_sh_stage = has_zp ? zp_tb_groups * zp_sh_stride : 0; + int zp_gl_rd_delta = zp_gl_stride; // Global A read index of current thread. int a_gl_rd = a_gl_stride * (threadIdx.x / a_gl_rd_delta_o) + @@ -442,6 +496,19 @@ __device__ inline void MarlinMoESingle( int s_sh_wr = threadIdx.x; bool s_sh_wr_pred = threadIdx.x < s_sh_stride; + // Zero-points + int zp_gl_rd; + if constexpr (has_zp) { + if constexpr (group_blocks == -1) { + zp_gl_rd = zp_sh_stride * slice_col + threadIdx.x; + } else { + zp_gl_rd = zp_gl_stride * ((thread_k_blocks * slice_row) / group_blocks) + + zp_sh_stride * slice_col + threadIdx.x; + } + } + int zp_sh_wr = threadIdx.x; + bool zp_sh_wr_pred = threadIdx.x < zp_sh_stride; + // We use a different scale layout for grouped and column-wise quantization as // we scale a `half2` tile in column-major layout in the former and in // row-major in the latter case. @@ -453,23 +520,29 @@ __device__ inline void MarlinMoESingle( s_sh_rd = 8 * ((threadIdx.x / 32) % (thread_n_blocks / 4)) + (threadIdx.x % 32) % 4; + // Zero-points have the same read layout as the scales + // (without column-wise case) + constexpr int num_col_threads = 8; + constexpr int num_row_threads = 4; + constexpr int num_ints_per_thread = 8 / pack_factor; + int zp_sh_rd; + if constexpr (has_zp) { + zp_sh_rd = num_ints_per_thread * num_col_threads * + ((threadIdx.x / 32) % (thread_n_blocks / 4)) + + num_ints_per_thread * ((threadIdx.x % 32) / num_row_threads); + } + int sh_first_group_id = -1; int sh_num_groups = -1; constexpr int sh_max_num_groups = 32; - int shs_size; - if constexpr (has_act_order) - shs_size = sh_max_num_groups * s_sh_stride + threads; - else - shs_size = group_blocks > 0 ? stages * s_sh_stage : threads; - extern __shared__ int4 sh[]; // Shared memory storage for global fetch pipelines. int4* sh_a = sh; int4* sh_b = sh_a + (stages * a_sh_stage); int4* sh_g_idx = sh_b + (stages * b_sh_stage); - int4* sh_s = sh_g_idx + (stages * g_idx_stage); - int* sh_sorted = (int*)(sh_s + shs_size); + int4* sh_zp = sh_g_idx + (stages * g_idx_stage); + int4* sh_s = sh_zp + (stages * zp_sh_stage); // Precompute which thread should not read memory in which iterations; this is // needed if there are more threads than required for a certain tilesize or @@ -525,8 +598,10 @@ __device__ inline void MarlinMoESingle( FragA frag_a[2][thread_m_blocks]; I4 frag_b_quant[2][b_thread_vecs]; FragC frag_c[thread_m_blocks][4][2]; - FragS frag_s[2][4]; // No act-order - FragS act_frag_s[2][4][4]; // For act-order + FragS frag_s[2][4]; // No act-order + FragS act_frag_s[2][4][4]; // For act-order + int frag_qzp[2][num_ints_per_thread]; // Zero-points + FragZP frag_zp; // Zero-points in fp16 // Zero accumulators. auto zero_accums = [&]() { @@ -633,6 +708,28 @@ __device__ inline void MarlinMoESingle( } } } + + if constexpr (has_zp && group_blocks != -1) { + int4* sh_zp_stage = sh_zp + zp_sh_stage * pipe; + + if constexpr (group_blocks >= thread_k_blocks) { + // Only fetch zero-points if this tile starts a new group + if (pipe % (group_blocks / thread_k_blocks) == 0) { + if (zp_sh_wr_pred) { + cp_async4(&sh_zp_stage[zp_sh_wr], &zp_ptr[zp_gl_rd]); + } + zp_gl_rd += zp_gl_rd_delta; + } + } else { + for (int i = 0; i < zp_tb_groups; i++) { + if (zp_sh_wr_pred) { + cp_async4(&sh_zp_stage[i * zp_sh_stride + zp_sh_wr], + &zp_ptr[zp_gl_rd]); + } + zp_gl_rd += zp_gl_rd_delta; + } + } + } } } // Insert a fence even when we are winding down the pipeline to ensure that @@ -640,15 +737,9 @@ __device__ inline void MarlinMoESingle( cp_async_fence(); }; - // TODO we are currently hitting illegal memory accesses when fetching - // sorted_ids to shared data: fix this - auto fetch_sorted_ids_to_shared = [&]() { - const int mpt = ceildiv(prob_m, threads); - for (int i = 0; i < mpt; i++) { - if ((i * sorted_gl_stride) + threadIdx.x < prob_m) { - sh_sorted[(i * sorted_sh_stride) + threadIdx.x] = - sorted_ids[(i * sorted_gl_stride) + threadIdx.x]; - } + auto fetch_zp_to_shared = [&]() { + if (zp_sh_wr_pred) { + cp_async4(&sh_zp[zp_sh_wr], &zp_ptr[zp_gl_rd]); } }; @@ -799,8 +890,83 @@ __device__ inline void MarlinMoESingle( } }; + auto fetch_zp_to_registers = [&](int k, int full_pipe) { + // This code does not handle group_blocks == 0, + // which signifies act_order. + // has_zp implies AWQ, which doesn't have act_order, + static_assert(!has_zp || group_blocks != 0); + + if constexpr (has_zp) { + int pipe = full_pipe % stages; + + if constexpr (group_blocks == -1) { + for (int i = 0; i < num_ints_per_thread; i++) { + frag_qzp[k % 2][i] = (reinterpret_cast(sh_zp))[zp_sh_rd + i]; + } + + } else if constexpr (group_blocks >= thread_k_blocks) { + int4* sh_zp_stage = + sh_zp + zp_sh_stage * ((group_blocks / thread_k_blocks) * + (pipe / (group_blocks / thread_k_blocks))); + for (int i = 0; i < num_ints_per_thread; i++) { + frag_qzp[k % 2][i] = + (reinterpret_cast(sh_zp_stage))[zp_sh_rd + i]; + } + } else { + int warp_id = threadIdx.x / 32; + int n_warps = thread_n_blocks / 4; + + int warp_row = warp_id / n_warps; + + int cur_k = warp_row * 16; + cur_k += k_iter_size * (k % b_sh_wr_iters); + + int k_blocks = cur_k / 16; + int cur_group_id = 0; + + // Suppress bogus and persistent divide-by-zero warning + #pragma nv_diagnostic push + #pragma nv_diag_suppress divide_by_zero + cur_group_id = k_blocks / group_blocks; + #pragma nv_diagnostic pop + + int4* sh_zp_stage = sh_zp + zp_sh_stage * pipe; + + sh_zp_stage += cur_group_id * zp_sh_stride; + + for (int i = 0; i < num_ints_per_thread; i++) { + frag_qzp[k % 2][i] = + (reinterpret_cast(sh_zp_stage))[zp_sh_rd + i]; + } + } + } + }; + // Execute the actual tensor core matmul of a sub-tile. auto matmul = [&](int k) { + if constexpr (has_zp) { + FragB frag_zp_0; + FragB frag_zp_1; + int zp_quant_0, zp_quant_1; + + if constexpr (w_type.size_bits() == 4) { + zp_quant_0 = frag_qzp[k % 2][0]; + zp_quant_1 = zp_quant_0 >> 8; + } else { + static_assert(w_type.size_bits() == 8); + zp_quant_0 = frag_qzp[k % 2][0]; + zp_quant_1 = frag_qzp[k % 2][1]; + } + + frag_zp_0 = dequant(zp_quant_0); + frag_zp_1 = dequant(zp_quant_1); + + frag_zp[0] = frag_zp_0[0]; + frag_zp[1] = frag_zp_0[1]; + frag_zp[2] = frag_zp_1[0]; + frag_zp[3] = frag_zp_1[1]; + } + // We have the m dimension as the inner loop in order to encourage overlapping // dequantization and matmul operations. #pragma unroll @@ -818,6 +984,10 @@ __device__ inline void MarlinMoESingle( FragB frag_b0 = dequant(b_quant_0); FragB frag_b1 = dequant(b_quant_1); + // Apply zero-point to frag_b0 + if constexpr (has_zp) { + sub_zp(frag_b0, frag_zp[j], 0); + } // Apply scale to frag_b0 if constexpr (has_act_order) { @@ -829,6 +999,11 @@ __device__ inline void MarlinMoESingle( } } + // Apply zero-point to frag_b1 + if constexpr (has_zp) { + sub_zp(frag_b1, frag_zp[j], 1); + } + // Apply scale to frag_b1 if constexpr (has_act_order) { scale4(frag_b1, act_frag_s[k % 2][0][j], act_frag_s[k % 2][1][j], @@ -1062,9 +1237,6 @@ __device__ inline void MarlinMoESingle( // Start global fetch and register load pipelines. auto start_pipes = [&]() { - // TODO re-enable after fixing this function - // fetch_sorted_ids_to_shared(); - // __syncthreads(); #pragma unroll for (int i = 0; i < stages - 1; i++) { @@ -1075,6 +1247,12 @@ __device__ inline void MarlinMoESingle( } fetch_scales_to_shared(true, g_idx[slice_k_start], g_idx[last_g_idx]); } + + if constexpr (has_zp && group_blocks == -1) { + if (i == 0) { + fetch_zp_to_shared(); + } + } fetch_to_shared(i, i, i < slice_iters); } @@ -1083,6 +1261,7 @@ __device__ inline void MarlinMoESingle( init_same_group(0); fetch_to_registers(0, 0); fetch_scales_to_registers(0, 0); + fetch_zp_to_registers(0, 0); a_gl_rd += a_gl_rd_delta_o * (stages - 1); slice_k_start_shared_fetch += tb_k * (stages - 1); }; @@ -1102,6 +1281,7 @@ __device__ inline void MarlinMoESingle( for (int k = 0; k < b_sh_wr_iters; k++) { fetch_to_registers(k + 1, pipe % stages); fetch_scales_to_registers(k + 1, pipe); + fetch_zp_to_registers(k + 1, pipe); if (k == b_sh_wr_iters - 2) { fetch_to_shared((pipe + stages - 1) % stages, pipe, slice_iters >= stages); @@ -1236,7 +1416,9 @@ __device__ inline void MarlinMoESingle( } else { s_gl_rd = s_sh_stride * slice_col + threadIdx.x; + zp_gl_rd = zp_sh_stride * slice_col + threadIdx.x; } + start_pipes(); } } @@ -1250,6 +1432,7 @@ template shared // fetch pipeline const bool has_act_order, // whether act_order is enabled + const bool has_zp, // whether zero-points are enabled const int group_blocks = -1 // number of consecutive 16x16 blocks // with a separate quantization scale > @@ -1261,6 +1444,8 @@ __global__ void MarlinMoE( const float* __restrict__ topk_weights, // float topk weights const int4* __restrict__ scales_ptr, // fp16 quantization scales of shape // (k/groupsize)xn + const int4* __restrict__ zp_ptr, // 4bit packed zero-points of shape + // (k/groupsize)x(n/pack_factor) const int* __restrict__ g_idx, // int32 group indices of shape k const int* __restrict__ expert_offsets, int num_groups, // number of scale groups per output channel @@ -1309,29 +1494,29 @@ __global__ void MarlinMoE( if (max_block == 1) { MarlinMoESingle( - A, B, C, sorted_ids_expert, topk_weights, scales_ptr, g_idx, + stages, has_act_order, has_zp, group_blocks>( + A, B, C, sorted_ids_expert, topk_weights, scales_ptr, zp_ptr, g_idx, expert_offsets, num_groups, expert_idx, num_experts, topk, prob_m, prob_n, prob_k, tot_m, locks, replicate_input, apply_weights, current_m_block); } else if (max_block == 2) { MarlinMoESingle( - A, B, C, sorted_ids_expert, topk_weights, scales_ptr, g_idx, + stages, has_act_order, has_zp, group_blocks>( + A, B, C, sorted_ids_expert, topk_weights, scales_ptr, zp_ptr, g_idx, expert_offsets, num_groups, expert_idx, num_experts, topk, prob_m, prob_n, prob_k, tot_m, locks, replicate_input, apply_weights, current_m_block); } else if (max_block == 3) { MarlinMoESingle( - A, B, C, sorted_ids_expert, topk_weights, scales_ptr, g_idx, + stages, has_act_order, has_zp, group_blocks>( + A, B, C, sorted_ids_expert, topk_weights, scales_ptr, zp_ptr, g_idx, expert_offsets, num_groups, expert_idx, num_experts, topk, prob_m, prob_n, prob_k, tot_m, locks, replicate_input, apply_weights, current_m_block); } else { MarlinMoESingle( - A, B, C, sorted_ids_expert, topk_weights, scales_ptr, g_idx, + stages, has_act_order, has_zp, group_blocks>( + A, B, C, sorted_ids_expert, topk_weights, scales_ptr, zp_ptr, g_idx, expert_offsets, num_groups, expert_idx, num_experts, topk, prob_m, prob_n, prob_k, tot_m, locks, replicate_input, apply_weights, current_m_block); @@ -1347,6 +1532,7 @@ template shared // fetch pipeline const bool has_act_order, // whether act_order is enabled + const bool has_zp, // whether zero-points are enabled const int group_blocks = -1 // number of consecutive 16x16 blocks // with a separate quantization scale > @@ -1358,6 +1544,8 @@ __global__ void MarlinMoE( const float* __restrict__ topk_weights, // float topk weights const int4* __restrict__ scales_ptr, // fp16 quantization scales of shape // (k/groupsize)xn + const int4* __restrict__ zp_ptr, // 4bit packed zero-points of shape + // (k/groupsize)x(n/pack_factor) const int* __restrict__ g_idx, // int32 group indices of shape k const int* __restrict__ expert_offsets, int num_groups, // number of scale groups per output channel @@ -1374,7 +1562,6 @@ __global__ void MarlinMoE( int current_m_block, // current m block to start kernel computation from int max_par, // maximum parallelism int cfg_max_m_blocks // upper bound on m blocks - ) { // Marlin is not implemented yet for SM < 8.0 assert(false); @@ -1389,37 +1576,41 @@ __global__ void MarlinMoE( const int USER_THREADS = 256; // Note: This is only used with user-provided thread_k/n const int STAGES = 4; // 4 pipeline stages fit into shared memory -// const int SHARED_MEM = -// 96 * 1024; // max shared memory on compute capability 8.6 (< 8.0) static constexpr int min_thread_n = 64; static constexpr int min_thread_k = 64; #define __CALL_IF_MOE(W_TYPE, THREAD_N_BLOCKS, THREAD_K_BLOCKS, HAS_ACT_ORDER, \ - GROUP_BLOCKS, NUM_THREADS) \ + HAS_ZP, GROUP_BLOCKS, NUM_THREADS) \ else if (q_type == W_TYPE && thread_n_blocks == THREAD_N_BLOCKS && \ thread_k_blocks == THREAD_K_BLOCKS && \ - has_act_order == HAS_ACT_ORDER && group_blocks == GROUP_BLOCKS && \ - num_threads == NUM_THREADS) { \ + has_act_order == HAS_ACT_ORDER && has_zp == HAS_ZP && \ + group_blocks == GROUP_BLOCKS && num_threads == NUM_THREADS) { \ cudaFuncSetAttribute( \ MarlinMoE, \ + STAGES, HAS_ACT_ORDER, HAS_ZP, GROUP_BLOCKS>, \ cudaFuncAttributeMaxDynamicSharedMemorySize, max_shared_mem); \ MarlinMoE \ + STAGES, HAS_ACT_ORDER, HAS_ZP, GROUP_BLOCKS> \ <<>>( \ A_ptr, B_ptr, C_ptr, sorted_ids_ptr, topk_weights_ptr, s_ptr, \ - g_idx_ptr, expert_offsets_ptr, num_groups, expert_idx, \ + zp_ptr, g_idx_ptr, expert_offsets_ptr, num_groups, expert_idx, \ num_experts, topk, prob_m, prob_n, prob_k, tot_m, locks, \ replicate_input, apply_weights, m_block, max_par, \ cfg_max_m_blocks); \ } -#define GPTQ_CALL_IF_MOE(W_TYPE, N_BLOCKS, K_BLOCKS, NUM_THREADS) \ - __CALL_IF_MOE(W_TYPE, N_BLOCKS, K_BLOCKS, true, 0, NUM_THREADS) \ - __CALL_IF_MOE(W_TYPE, N_BLOCKS, K_BLOCKS, false, -1, NUM_THREADS) \ - __CALL_IF_MOE(W_TYPE, N_BLOCKS, K_BLOCKS, false, 2, NUM_THREADS) \ - __CALL_IF_MOE(W_TYPE, N_BLOCKS, K_BLOCKS, false, 4, NUM_THREADS) \ - __CALL_IF_MOE(W_TYPE, N_BLOCKS, K_BLOCKS, false, 8, NUM_THREADS) +#define GPTQ_CALL_IF_MOE(W_TYPE, N_BLOCKS, K_BLOCKS, NUM_THREADS) \ + __CALL_IF_MOE(W_TYPE, N_BLOCKS, K_BLOCKS, true, false, 0, NUM_THREADS) \ + __CALL_IF_MOE(W_TYPE, N_BLOCKS, K_BLOCKS, false, false, -1, NUM_THREADS) \ + __CALL_IF_MOE(W_TYPE, N_BLOCKS, K_BLOCKS, false, false, 2, NUM_THREADS) \ + __CALL_IF_MOE(W_TYPE, N_BLOCKS, K_BLOCKS, false, false, 4, NUM_THREADS) \ + __CALL_IF_MOE(W_TYPE, N_BLOCKS, K_BLOCKS, false, false, 8, NUM_THREADS) + +#define AWQ_CALL_IF_MOE(W_TYPE, N_BLOCKS, K_BLOCKS, NUM_THREADS) \ + __CALL_IF_MOE(W_TYPE, N_BLOCKS, K_BLOCKS, false, true, -1, NUM_THREADS) \ + __CALL_IF_MOE(W_TYPE, N_BLOCKS, K_BLOCKS, false, true, 2, NUM_THREADS) \ + __CALL_IF_MOE(W_TYPE, N_BLOCKS, K_BLOCKS, false, true, 4, NUM_THREADS) \ + __CALL_IF_MOE(W_TYPE, N_BLOCKS, K_BLOCKS, false, true, 8, NUM_THREADS) } // namespace marlin_moe diff --git a/csrc/moe/marlin_kernels/marlin_moe_kernel_ku4.cu b/csrc/moe/marlin_kernels/marlin_moe_kernel_ku4.cu new file mode 100644 index 0000000000000..77bc0dd90edde --- /dev/null +++ b/csrc/moe/marlin_kernels/marlin_moe_kernel_ku4.cu @@ -0,0 +1,31 @@ +#include "marlin_moe_kernel_ku4.h" + +namespace marlin_moe { + +// We return bool so we can create these different kernel calls as a sequence +// of if-elseif's. +bool call_marlin_moe_kernel_ku4( + vllm::ScalarType const& q_type, int thread_n_blocks, int thread_k_blocks, + bool has_act_order, int group_blocks, int num_threads, int blocks, + int max_shared_mem, cudaStream_t stream, const int4* A_ptr, + const int4* B_ptr, int4* C_ptr, const int* sorted_ids_ptr, + const float* topk_weights_ptr, const int4* s_ptr, const int4* zp_ptr, + const int* g_idx_ptr, int* expert_offsets_ptr, int num_groups, + int expert_idx, int num_experts, int topk, int prob_m, int prob_n, + int prob_k, int tot_m, int* locks, bool replicate_input, bool apply_weights, + int m_block, int max_par, int cfg_max_m_blocks) { + bool has_zp = true; + + if (false) { + } + AWQ_CALL_IF_MOE(vllm::kU4, 16, 4, 256) + AWQ_CALL_IF_MOE(vllm::kU4, 8, 8, 256) + AWQ_CALL_IF_MOE(vllm::kU4, 8, 4, 128) + AWQ_CALL_IF_MOE(vllm::kU4, 4, 8, 128) + else { + return false; + } + return true; +} + +} // namespace marlin_moe diff --git a/csrc/moe/marlin_kernels/marlin_moe_kernel_ku4.h b/csrc/moe/marlin_kernels/marlin_moe_kernel_ku4.h new file mode 100644 index 0000000000000..833fadf37721f --- /dev/null +++ b/csrc/moe/marlin_kernels/marlin_moe_kernel_ku4.h @@ -0,0 +1,20 @@ +#pragma once + +#include "marlin_moe_kernel.h" + +namespace marlin_moe { + +// We return bool so we can create these different kernel calls as a sequence +// of if-elseif's. +bool call_marlin_moe_kernel_ku4( + vllm::ScalarType const& q_type, int thread_n_blocks, int thread_k_blocks, + bool has_act_order, int group_blocks, int num_threads, int blocks, + int max_shared_mem, cudaStream_t stream, const int4* A_ptr, + const int4* B_ptr, int4* C_ptr, const int* sorted_ids_ptr, + const float* topk_weights_ptr, const int4* s_ptr, const int4* zp_ptr, + const int* g_idx_ptr, int* expert_offsets_ptr, int num_groups, + int expert_idx, int num_experts, int topk, int prob_m, int prob_n, + int prob_k, int tot_m, int* locks, bool replicate_input, bool apply_weights, + int m_block, int max_par, int cfg_max_m_blocks); + +} // namespace marlin_moe diff --git a/csrc/moe/marlin_kernels/marlin_moe_kernel_ku4b8.cu b/csrc/moe/marlin_kernels/marlin_moe_kernel_ku4b8.cu index cbafd9ffe7474..f7e57b0375945 100644 --- a/csrc/moe/marlin_kernels/marlin_moe_kernel_ku4b8.cu +++ b/csrc/moe/marlin_kernels/marlin_moe_kernel_ku4b8.cu @@ -9,11 +9,13 @@ bool call_marlin_moe_kernel_ku4b8( bool has_act_order, int group_blocks, int num_threads, int blocks, int max_shared_mem, cudaStream_t stream, const int4* A_ptr, const int4* B_ptr, int4* C_ptr, const int* sorted_ids_ptr, - const float* topk_weights_ptr, const int4* s_ptr, const int* g_idx_ptr, - int* expert_offsets_ptr, int num_groups, int expert_idx, int num_experts, - int topk, int prob_m, int prob_n, int prob_k, int tot_m, int* locks, - bool replicate_input, bool apply_weights, int m_block, int max_par, - int cfg_max_m_blocks) { + const float* topk_weights_ptr, const int4* s_ptr, const int4* zp_ptr, + const int* g_idx_ptr, int* expert_offsets_ptr, int num_groups, + int expert_idx, int num_experts, int topk, int prob_m, int prob_n, + int prob_k, int tot_m, int* locks, bool replicate_input, bool apply_weights, + int m_block, int max_par, int cfg_max_m_blocks) { + bool has_zp = false; + if (false) { } GPTQ_CALL_IF_MOE(vllm::kU4B8, 16, 4, 256) diff --git a/csrc/moe/marlin_kernels/marlin_moe_kernel_ku4b8.h b/csrc/moe/marlin_kernels/marlin_moe_kernel_ku4b8.h index 9eacb42c115f0..494da8f10e262 100644 --- a/csrc/moe/marlin_kernels/marlin_moe_kernel_ku4b8.h +++ b/csrc/moe/marlin_kernels/marlin_moe_kernel_ku4b8.h @@ -11,10 +11,10 @@ bool call_marlin_moe_kernel_ku4b8( bool has_act_order, int group_blocks, int num_threads, int blocks, int max_shared_mem, cudaStream_t stream, const int4* A_ptr, const int4* B_ptr, int4* C_ptr, const int* sorted_ids_ptr, - const float* topk_weights_ptr, const int4* s_ptr, const int* g_idx_ptr, - int* expert_offsets_ptr, int num_groups, int expert_idx, int num_experts, - int topk, int prob_m, int prob_n, int prob_k, int tot_m, int* locks, - bool replicate_input, bool apply_weights, int m_block, int max_par, - int cfg_max_m_blocks); + const float* topk_weights_ptr, const int4* s_ptr, const int4* zp_ptr, + const int* g_idx_ptr, int* expert_offsets_ptr, int num_groups, + int expert_idx, int num_experts, int topk, int prob_m, int prob_n, + int prob_k, int tot_m, int* locks, bool replicate_input, bool apply_weights, + int m_block, int max_par, int cfg_max_m_blocks); } // namespace marlin_moe diff --git a/csrc/moe/marlin_kernels/marlin_moe_kernel_ku8b128.cu b/csrc/moe/marlin_kernels/marlin_moe_kernel_ku8b128.cu index c46712474f715..a901f0b11cd78 100644 --- a/csrc/moe/marlin_kernels/marlin_moe_kernel_ku8b128.cu +++ b/csrc/moe/marlin_kernels/marlin_moe_kernel_ku8b128.cu @@ -9,11 +9,13 @@ bool call_marlin_moe_kernel_ku8b128( bool has_act_order, int group_blocks, int num_threads, int blocks, int max_shared_mem, cudaStream_t stream, const int4* A_ptr, const int4* B_ptr, int4* C_ptr, const int* sorted_ids_ptr, - const float* topk_weights_ptr, const int4* s_ptr, const int* g_idx_ptr, - int* expert_offsets_ptr, int num_groups, int expert_idx, int num_experts, - int topk, int prob_m, int prob_n, int prob_k, int tot_m, int* locks, - bool replicate_input, bool apply_weights, int m_block, int max_par, - int cfg_max_m_blocks) { + const float* topk_weights_ptr, const int4* s_ptr, const int4* zp_ptr, + const int* g_idx_ptr, int* expert_offsets_ptr, int num_groups, + int expert_idx, int num_experts, int topk, int prob_m, int prob_n, + int prob_k, int tot_m, int* locks, bool replicate_input, bool apply_weights, + int m_block, int max_par, int cfg_max_m_blocks) { + bool has_zp = false; + if (false) { } GPTQ_CALL_IF_MOE(vllm::kU8B128, 16, 4, 256) diff --git a/csrc/moe/marlin_kernels/marlin_moe_kernel_ku8b128.h b/csrc/moe/marlin_kernels/marlin_moe_kernel_ku8b128.h index 7cd9acafb3b80..f3018aa0c1ab7 100644 --- a/csrc/moe/marlin_kernels/marlin_moe_kernel_ku8b128.h +++ b/csrc/moe/marlin_kernels/marlin_moe_kernel_ku8b128.h @@ -9,10 +9,10 @@ bool call_marlin_moe_kernel_ku8b128( bool has_act_order, int group_blocks, int num_threads, int blocks, int max_shared_mem, cudaStream_t stream, const int4* A_ptr, const int4* B_ptr, int4* C_ptr, const int* sorted_ids_ptr, - const float* topk_weights_ptr, const int4* s_ptr, const int* g_idx_ptr, - int* expert_offsets_ptr, int num_groups, int expert_idx, int num_experts, - int topk, int prob_m, int prob_n, int prob_k, int tot_m, int* locks, - bool replicate_input, bool apply_weights, int m_block, int max_par, - int cfg_max_m_blocks); + const float* topk_weights_ptr, const int4* s_ptr, const int4* zp_ptr, + const int* g_idx_ptr, int* expert_offsets_ptr, int num_groups, + int expert_idx, int num_experts, int topk, int prob_m, int prob_n, + int prob_k, int tot_m, int* locks, bool replicate_input, bool apply_weights, + int m_block, int max_par, int cfg_max_m_blocks); } diff --git a/csrc/moe/marlin_moe_ops.cu b/csrc/moe/marlin_moe_ops.cu index c97b5dbd2a54e..5f12483e951e8 100644 --- a/csrc/moe/marlin_moe_ops.cu +++ b/csrc/moe/marlin_moe_ops.cu @@ -27,8 +27,10 @@ #include "core/exception.hpp" #include "core/scalar_type.hpp" +#include "core/registration.h" #include "marlin_kernels/marlin_moe_kernel_ku4b8.h" #include "marlin_kernels/marlin_moe_kernel_ku8b128.h" +#include "marlin_kernels/marlin_moe_kernel_ku4.h" template inline std::string str(T x) { @@ -156,6 +158,7 @@ thread_config_t small_batch_thread_configs[] = { {128, 64, 128}, // Reduce N 2X, same K {64, 256, 256}, // Reduce K 2X, increase N 2X {64, 128, 128}, // Reduce K 2X, same N + {64, 64, 128}, // Reduce both 2X }; thread_config_t large_batch_thread_configs[] = { @@ -166,6 +169,7 @@ thread_config_t large_batch_thread_configs[] = { {128, 128, 256}, // Reduce N 2X, increase K 2X {64, 128, 128}, // Reduce N 2X, same K {128, 64, 128}, // Reduce N 4X, increase K 2X + {64, 64, 128}, // Reduce N 4X, same K }; int get_scales_cache_size(thread_config_t const& th_config, int prob_m, @@ -311,27 +315,28 @@ exec_config_t determine_thread_config(int prob_m, int prob_n, int prob_k, return exec_config_t{0, {-1, -1, -1}}; } -#define CALL_MOE_KERNEL_FUNCTION(KERNEL_FUNCTION) \ - else if (KERNEL_FUNCTION(q_type, thread_n_blocks, thread_k_blocks, \ - has_act_order, group_blocks, num_threads, blocks, \ - max_shared_mem, stream, A_ptr, B_ptr, C_ptr, \ - sorted_ids_ptr, topk_weights_ptr, s_ptr, g_idx_ptr, \ - expert_offsets_ptr, num_groups, expert_idx, \ - num_experts, topk, prob_m, prob_n, prob_k, tot_m, \ - locks, replicate_input, apply_weights, m_block, \ - max_par, exec_cfg.max_m_blocks)) { \ +#define CALL_MOE_KERNEL_FUNCTION(KERNEL_FUNCTION) \ + else if (KERNEL_FUNCTION( \ + q_type, thread_n_blocks, thread_k_blocks, has_act_order, \ + group_blocks, num_threads, blocks, max_shared_mem, stream, \ + A_ptr, B_ptr, C_ptr, sorted_ids_ptr, topk_weights_ptr, s_ptr, \ + zp_ptr, g_idx_ptr, expert_offsets_ptr, num_groups, expert_idx, \ + num_experts, topk, prob_m, prob_n, prob_k, tot_m, locks, \ + replicate_input, apply_weights, m_block, max_par, \ + exec_cfg.max_m_blocks)) { \ } void marlin_mm_moe(const void* A, const void* B, void* C, const void* sorted_ids, const void* topk_weights, - const void* topk_ids, const void* s, const void* g_idx, - const void* perm, void* a_tmp, void* expert_offsets, - int prob_m, int prob_n, int prob_k, void* workspace, - vllm::ScalarType const& q_type, bool has_act_order, - bool is_k_full, int num_groups, int group_size, - int num_experts, int topk, int moe_block_size, int dev, - cudaStream_t stream, int thread_k, int thread_n, int sms, - int max_par, bool replicate_input, bool apply_weights) { + const void* topk_ids, const void* s, void* zp, + const void* g_idx, const void* perm, void* a_tmp, + void* expert_offsets, int prob_m, int prob_n, int prob_k, + void* workspace, vllm::ScalarType const& q_type, + bool has_act_order, bool is_k_full, bool has_zp, + int num_groups, int group_size, int num_experts, int topk, + int moe_block_size, int dev, cudaStream_t stream, + int thread_k, int thread_n, int sms, int max_par, + bool replicate_input, bool apply_weights) { TORCH_CHECK(prob_m > 0 && prob_n > 0 && prob_k > 0, "Invalid MNK = [", prob_m, ", ", prob_n, ", ", prob_k, "]"); @@ -435,6 +440,8 @@ void marlin_mm_moe(const void* A, const void* B, void* C, const float* topk_weights_ptr = (const float*)topk_weights; const int* sorted_ids_ptr = (const int*)sorted_ids; const int4* s_ptr = (const int4*)s + num_groups * prob_n / 8 * expert_idx; + const int4* zp_ptr = + (const int4*)zp + num_groups * prob_n / (pack_factor * 4) * expert_idx; const int* g_idx_ptr = (const int*)g_idx + prob_k * expert_idx; const int* perm_ptr = (const int*)perm + prob_k * expert_idx; int* locks = (int*)workspace; @@ -455,6 +462,7 @@ void marlin_mm_moe(const void* A, const void* B, void* C, } CALL_MOE_KERNEL_FUNCTION(call_marlin_moe_kernel_ku4b8) CALL_MOE_KERNEL_FUNCTION(call_marlin_moe_kernel_ku8b128) + CALL_MOE_KERNEL_FUNCTION(call_marlin_moe_kernel_ku4) else { TORCH_CHECK(false, "Unsupported shapes: MNK = [" + str(prob_m) + ", " + str(prob_n) + ", " + str(prob_k) + "]" + @@ -474,15 +482,24 @@ torch::Tensor marlin_gemm_moe( const torch::Tensor& a, const torch::Tensor& b_q_weights, const torch::Tensor& sorted_ids, const torch::Tensor& topk_weights, const torch::Tensor& topk_ids, const torch::Tensor& b_scales, - const torch::Tensor& g_idx, const torch::Tensor& perm, - torch::Tensor& workspace, vllm::ScalarTypeTorchPtr const& b_q_type, - int64_t size_m, int64_t size_n, int64_t size_k, bool is_k_full, - int64_t num_experts, int64_t topk, int64_t moe_block_size, - bool replicate_input, bool apply_weights) { - TORCH_CHECK(*b_q_type == vllm::kU4B8 || *b_q_type == vllm::kU8B128, - "b_q_type must be uint4b8 or uint8b128. Got = ", b_q_type->str()); + torch::Tensor& b_zeros, const torch::Tensor& g_idx, + const torch::Tensor& perm, torch::Tensor& workspace, + vllm::ScalarTypeId const b_q_type_id, int64_t size_m, int64_t size_n, + int64_t size_k, bool is_k_full, int64_t num_experts, int64_t topk, + int64_t moe_block_size, bool replicate_input, bool apply_weights) { + vllm::ScalarType const b_q_type = vllm::ScalarType::from_id(b_q_type_id); + bool has_zp = b_zeros.size(1) != 0; + if (has_zp) { + TORCH_CHECK( + b_q_type == vllm::kU4, + "b_q_type must be u4 when has_zp = True. Got = ", b_q_type.str()); + } else { + TORCH_CHECK( + b_q_type == vllm::kU4B8 || b_q_type == vllm::kU8B128, + "b_q_type must be uint4b8 or uint8b128. Got = ", b_q_type.str()); + } - int pack_factor = 32 / b_q_type->size_bits(); + int pack_factor = 32 / b_q_type.size_bits(); int max_par = 4; @@ -542,13 +559,30 @@ torch::Tensor marlin_gemm_moe( } } + // Verify b_zeros + if (has_zp) { + int rank = b_zeros.sizes().size(); + TORCH_CHECK(rank == 3, "b_zeros rank = ", rank, " is not 3"); + TORCH_CHECK(b_zeros.size(1) == num_groups, + "b_zeros dim 1 = ", b_zeros.size(1), + " is not num_groups = ", num_groups); + TORCH_CHECK(b_zeros.size(2) == size_n / pack_factor, + "b_zeros dim 2 = ", b_zeros.size(2), + " is not size_n / pack_factor = ", size_n / pack_factor); + } + marlin_moe::marlin_mm_moe( a.data_ptr(), b_q_weights.data_ptr(), c.data_ptr(), sorted_ids.data_ptr(), topk_weights.data_ptr(), topk_ids.data_ptr(), b_scales.data_ptr(), - g_idx.data_ptr(), perm.data_ptr(), a_tmp.data_ptr(), + b_zeros.data_ptr(), g_idx.data_ptr(), perm.data_ptr(), a_tmp.data_ptr(), expert_offsets.data_ptr(), size_m, size_n, size_k, workspace.data_ptr(), - *b_q_type, has_act_order, is_k_full, num_groups, group_size, num_experts, - topk, moe_block_size, dev, at::cuda::getCurrentCUDAStream(dev), thread_k, - thread_n, sms, max_par, replicate_input, apply_weights); + b_q_type, has_act_order, is_k_full, has_zp, num_groups, group_size, + num_experts, topk, moe_block_size, dev, + at::cuda::getCurrentCUDAStream(dev), thread_k, thread_n, sms, max_par, + replicate_input, apply_weights); return c; } + +TORCH_LIBRARY_IMPL_EXPAND(TORCH_EXTENSION_NAME, CUDA, m) { + m.impl("marlin_gemm_moe", &marlin_gemm_moe); +} diff --git a/csrc/moe/marlin_moe_ops.h b/csrc/moe/marlin_moe_ops.h deleted file mode 100644 index adee8399a4d6f..0000000000000 --- a/csrc/moe/marlin_moe_ops.h +++ /dev/null @@ -1,15 +0,0 @@ -#pragma once - -#include - -#include "core/scalar_type.hpp" - -torch::Tensor marlin_gemm_moe( - const torch::Tensor& a, const torch::Tensor& b_q_weights, - const torch::Tensor& sorted_ids, const torch::Tensor& topk_weights, - const torch::Tensor& topk_ids, const torch::Tensor& b_scales, - const torch::Tensor& g_idx, const torch::Tensor& perm, - torch::Tensor& workspace, vllm::ScalarTypeTorchPtr const& b_q_type, - int64_t size_m, int64_t size_n, int64_t size_k, bool is_k_full, - int64_t num_experts, int64_t topk, int64_t moe_block_size, - bool replicate_input, bool apply_weights); diff --git a/csrc/moe_align_block_size_kernels.cu b/csrc/moe/moe_align_sum_kernels.cu similarity index 59% rename from csrc/moe_align_block_size_kernels.cu rename to csrc/moe/moe_align_sum_kernels.cu index 1f8d75da83bb8..fff7ce34c838a 100644 --- a/csrc/moe_align_block_size_kernels.cu +++ b/csrc/moe/moe_align_sum_kernels.cu @@ -1,15 +1,17 @@ #include #include +#include #include #include -#include "cuda_compat.h" -#include "dispatch_utils.h" +#include "../cuda_compat.h" +#include "../dispatch_utils.h" #define CEILDIV(x, y) (((x) + (y) - 1) / (y)) namespace vllm { +namespace moe { namespace { __device__ __forceinline__ int32_t index(int32_t total_col, int32_t row, @@ -32,10 +34,10 @@ __global__ void moe_align_block_size_kernel(scalar_t* __restrict__ topk_ids, extern __shared__ int32_t shared_mem[]; int32_t* tokens_cnts = - shared_mem; // 2d tensor with shape (num_experts + 1, num_experts) + shared_mem; // 2d tensor with shape (blockDim.x + 1, num_experts) int32_t* cumsum = - shared_mem + (num_experts + 1) * - num_experts; // 1d tensor with shape (num_experts + 1) + shared_mem + + (blockDim.x + 1) * num_experts; // 1d tensor with shape (num_experts + 1) for (int i = 0; i < num_experts; ++i) { tokens_cnts[index(num_experts, threadIdx.x + 1, i)] = 0; @@ -53,10 +55,12 @@ __global__ void moe_align_block_size_kernel(scalar_t* __restrict__ topk_ids, __syncthreads(); // For each expert we accumulate the token counts from the different threads. - tokens_cnts[index(num_experts, 0, threadIdx.x)] = 0; - for (int i = 1; i <= blockDim.x; ++i) { - tokens_cnts[index(num_experts, i, threadIdx.x)] += - tokens_cnts[index(num_experts, i - 1, threadIdx.x)]; + if (threadIdx.x < num_experts) { + tokens_cnts[index(num_experts, 0, threadIdx.x)] = 0; + for (int i = 1; i <= blockDim.x; ++i) { + tokens_cnts[index(num_experts, i, threadIdx.x)] += + tokens_cnts[index(num_experts, i - 1, threadIdx.x)]; + } } __syncthreads(); @@ -79,9 +83,11 @@ __global__ void moe_align_block_size_kernel(scalar_t* __restrict__ topk_ids, * For each expert, each thread processes the tokens of the corresponding * blocks and stores the corresponding expert_id for each block. */ - for (int i = cumsum[threadIdx.x]; i < cumsum[threadIdx.x + 1]; - i += block_size) { - expert_ids[i / block_size] = threadIdx.x; + if (threadIdx.x < num_experts) { + for (int i = cumsum[threadIdx.x]; i < cumsum[threadIdx.x + 1]; + i += block_size) { + expert_ids[i / block_size] = threadIdx.x; + } } /** @@ -106,6 +112,24 @@ __global__ void moe_align_block_size_kernel(scalar_t* __restrict__ topk_ids, ++tokens_cnts[index(num_experts, threadIdx.x, expert_id)]; } } + +template +__global__ void moe_sum_kernel( + scalar_t* __restrict__ out, // [..., d] + const scalar_t* __restrict__ input, // [..., topk, d] + const int d) { + const int64_t token_idx = blockIdx.x; + for (int64_t idx = threadIdx.x; idx < d; idx += blockDim.x) { + scalar_t x = 0.0; +#pragma unroll + for (int k = 0; k < TOPK; ++k) { + x += VLLM_LDG(&input[token_idx * TOPK * d + k * d + idx]); + } + out[token_idx * d + idx] = x; + } +} + +} // namespace moe } // namespace vllm void moe_align_block_size(torch::Tensor topk_ids, int64_t num_experts, @@ -117,18 +141,62 @@ void moe_align_block_size(torch::Tensor topk_ids, int64_t num_experts, topk_ids.scalar_type(), "moe_align_block_size_kernel", [&] { // calc needed amount of shared mem for `tokens_cnts` and `cumsum` // tensors + const int32_t num_thread = max((int32_t)num_experts, WARP_SIZE); const int32_t shared_mem = - ((num_experts + 1) * num_experts + (num_experts + 1)) * + ((num_thread + 1) * num_experts + (num_experts + 1)) * sizeof(int32_t); // set dynamic shared mem - auto kernel = vllm::moe_align_block_size_kernel; + auto kernel = vllm::moe::moe_align_block_size_kernel; AT_CUDA_CHECK(VLLM_DevFuncAttribute_SET_MaxDynamicSharedMemorySize( (void*)kernel, shared_mem)); - kernel<<<1, num_experts, shared_mem, stream>>>( + kernel<<<1, num_thread, shared_mem, stream>>>( topk_ids.data_ptr(), sorted_token_ids.data_ptr(), experts_ids.data_ptr(), num_tokens_post_pad.data_ptr(), num_experts, block_size, topk_ids.numel()); }); } + +void moe_sum(torch::Tensor& input, // [num_tokens, topk, hidden_size] + torch::Tensor& output) // [num_tokens, hidden_size] +{ + const int hidden_size = input.size(-1); + const int num_tokens = output.numel() / hidden_size; + const int topk = input.size(1); + + dim3 grid(num_tokens); + dim3 block(std::min(hidden_size, 1024)); + const at::cuda::OptionalCUDAGuard device_guard(device_of(output)); + const cudaStream_t stream = at::cuda::getCurrentCUDAStream(); + + switch (topk) { + case 2: + VLLM_DISPATCH_FLOATING_TYPES(input.scalar_type(), "moe_sum_kernel", [&] { + vllm::moe::moe_sum_kernel<<>>( + output.data_ptr(), input.data_ptr(), + hidden_size); + }); + break; + + case 3: + VLLM_DISPATCH_FLOATING_TYPES(input.scalar_type(), "moe_sum_kernel", [&] { + vllm::moe::moe_sum_kernel<<>>( + output.data_ptr(), input.data_ptr(), + hidden_size); + }); + break; + + case 4: + VLLM_DISPATCH_FLOATING_TYPES(input.scalar_type(), "moe_sum_kernel", [&] { + vllm::moe::moe_sum_kernel<<>>( + output.data_ptr(), input.data_ptr(), + hidden_size); + }); + break; + + default: + at::sum_out(output, input, 1); + break; + } +} diff --git a/csrc/moe/moe_ops.h b/csrc/moe/moe_ops.h index a251730aa765a..596cc0aa6c855 100644 --- a/csrc/moe/moe_ops.h +++ b/csrc/moe/moe_ops.h @@ -5,3 +5,10 @@ void topk_softmax(torch::Tensor& topk_weights, torch::Tensor& topk_indices, torch::Tensor& token_expert_indices, torch::Tensor& gating_output); + +void moe_sum(torch::Tensor& input, torch::Tensor& output); + +void moe_align_block_size(torch::Tensor topk_ids, int64_t num_experts, + int64_t block_size, torch::Tensor sorted_token_ids, + torch::Tensor experts_ids, + torch::Tensor num_tokens_post_pad); diff --git a/csrc/moe/torch_bindings.cpp b/csrc/moe/torch_bindings.cpp index cd65a8ee92b94..f3a558c14ab93 100644 --- a/csrc/moe/torch_bindings.cpp +++ b/csrc/moe/torch_bindings.cpp @@ -1,6 +1,5 @@ #include "core/registration.h" #include "moe_ops.h" -#include "marlin_moe_ops.h" TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, m) { // Apply topk softmax to the gating outputs. @@ -9,16 +8,31 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, m) { "token_expert_indices, Tensor gating_output) -> ()"); m.impl("topk_softmax", torch::kCUDA, &topk_softmax); + // Calculate the result of moe by summing up the partial results + // from all selected experts. + m.def("moe_sum(Tensor! input, Tensor output) -> ()"); + m.impl("moe_sum", torch::kCUDA, &moe_sum); + + // Aligning the number of tokens to be processed by each expert such + // that it is divisible by the block size. + m.def( + "moe_align_block_size(Tensor topk_ids, int num_experts," + " int block_size, Tensor! sorted_token_ids," + " Tensor! experts_ids," + " Tensor! num_tokens_post_pad) -> ()"); + m.impl("moe_align_block_size", torch::kCUDA, &moe_align_block_size); + #ifndef USE_ROCM m.def( "marlin_gemm_moe(Tensor! a, Tensor! b_q_weights, Tensor! sorted_ids, " "Tensor! topk_weights, Tensor! topk_ids, Tensor! b_scales, Tensor! " - "g_idx, Tensor! perm, Tensor! workspace, " - "__torch__.torch.classes._core_C.ScalarType b_q_type, int size_m, " - "int size_n, int size_k, bool is_k_full, int num_experts, int topk, " + "b_zeros, Tensor! g_idx, Tensor! perm, Tensor! workspace, " + "int b_q_type, SymInt size_m, " + "SymInt size_n, SymInt size_k, bool is_k_full, int num_experts, int " + "topk, " "int moe_block_size, bool replicate_input, bool apply_weights)" " -> Tensor"); - m.impl("marlin_gemm_moe", torch::kCUDA, &marlin_gemm_moe); + // conditionally compiled so impl registration is in source file #endif } diff --git a/csrc/ops.h b/csrc/ops.h index 3e31ddb286e80..c50eb39a3dacc 100644 --- a/csrc/ops.h +++ b/csrc/ops.h @@ -5,6 +5,30 @@ #include "core/scalar_type.hpp" +#include + +torch::Tensor weak_ref_tensor(torch::Tensor& tensor) { + // Ensure tensor is on CUDA + if (!tensor.is_cuda()) { + throw std::runtime_error("Tensor must be on CUDA device"); + } + + // Get the raw data pointer + void* data_ptr = tensor.data_ptr(); + + // Get tensor sizes and strides + std::vector sizes = tensor.sizes().vec(); + std::vector strides = tensor.strides().vec(); + + // Get tensor options (dtype, device) + auto options = tensor.options(); + + // Create a new tensor from the raw data pointer + auto new_tensor = torch::from_blob(data_ptr, sizes, strides, options); + + return new_tensor; +} + void paged_attention_v1( torch::Tensor& out, torch::Tensor& query, torch::Tensor& key_cache, torch::Tensor& value_cache, int64_t num_kv_heads, double scale, @@ -48,6 +72,9 @@ void gelu_and_mul(torch::Tensor& out, torch::Tensor& input); void gelu_tanh_and_mul(torch::Tensor& out, torch::Tensor& input); +void fatrelu_and_mul(torch::Tensor& out, torch::Tensor& input, + double threshold); + void gelu_new(torch::Tensor& out, torch::Tensor& input); void gelu_fast(torch::Tensor& out, torch::Tensor& input); @@ -90,63 +117,8 @@ torch::Tensor awq_dequantize(torch::Tensor _kernel, torch::Tensor _zeros, int64_t split_k_iters, int64_t thx, int64_t thy); -torch::Tensor marlin_gemm(torch::Tensor& a, torch::Tensor& b_q_weight, - torch::Tensor& b_scales, torch::Tensor& workspace, - int64_t size_m, int64_t size_n, int64_t size_k); - -namespace machete { - -std::vector supported_schedules( - vllm::ScalarTypeTorchPtr const& btype); - -torch::Tensor gemm(torch::Tensor const& A, torch::Tensor const& B, - vllm::ScalarTypeTorchPtr const& btype, - c10::optional const& scales, - c10::optional const& zeros, - c10::optional group_size, - c10::optional const& C, - c10::optional alpha, c10::optional beta, - c10::optional schedule); - -torch::Tensor prepack_B(torch::Tensor const& B, - vllm::ScalarTypeTorchPtr const& btype); - -}; // namespace machete - torch::Tensor permute_cols(torch::Tensor const& A, torch::Tensor const& perm); -torch::Tensor gptq_marlin_24_gemm(torch::Tensor& a, torch::Tensor& b_q_weight, - torch::Tensor& b_meta, - torch::Tensor& b_scales, - torch::Tensor& workspace, - vllm::ScalarTypeTorchPtr const& b_q_type, - int64_t size_m, int64_t size_n, - int64_t size_k); - -torch::Tensor gptq_marlin_gemm(torch::Tensor& a, torch::Tensor& b_q_weight, - torch::Tensor& b_scales, torch::Tensor& b_zeros, - torch::Tensor& g_idx, torch::Tensor& perm, - torch::Tensor& workspace, - vllm::ScalarTypeTorchPtr const& b_q_type, - int64_t size_m, int64_t size_n, int64_t size_k, - bool is_k_full, bool has_zp, - bool use_fp32_reduce); - -torch::Tensor gptq_marlin_repack(torch::Tensor& b_q_weight, torch::Tensor& perm, - int64_t size_k, int64_t size_n, - int64_t num_bits); - -torch::Tensor gptq_marlin_repack_meta(torch::Tensor& b_q_weight, - torch::Tensor& perm, c10::SymInt size_k, - c10::SymInt size_n, int64_t num_bits); - -torch::Tensor awq_marlin_repack(torch::Tensor& b_q_weight, int64_t size_k, - int64_t size_n, int64_t num_bits); - -torch::Tensor awq_marlin_repack_meta(torch::Tensor& b_q_weight, - c10::SymInt size_k, c10::SymInt size_n, - int64_t num_bits); - torch::Tensor ggml_dequantize(torch::Tensor W, int64_t type, int64_t m, int64_t n); @@ -156,11 +128,6 @@ torch::Tensor ggml_mul_mat_vec_a8(torch::Tensor W, torch::Tensor X, torch::Tensor ggml_mul_mat_a8(torch::Tensor W, torch::Tensor X, int64_t type, int64_t row); -torch::Tensor fp8_marlin_gemm(torch::Tensor& a, torch::Tensor& b_q_weight, - torch::Tensor& b_scales, torch::Tensor& workspace, - int64_t num_bits, int64_t size_m, int64_t size_n, - int64_t size_k); - bool cutlass_scaled_mm_supports_fp8(int64_t cuda_device_capability); void cutlass_scaled_mm(torch::Tensor& out, torch::Tensor const& a, @@ -175,14 +142,6 @@ void cutlass_scaled_mm_azp(torch::Tensor& out, torch::Tensor const& a, torch::Tensor const& azp_adj, c10::optional const& azp, c10::optional const& bias); - -torch::Tensor marlin_qqq_gemm(torch::Tensor const& a, - torch::Tensor const& b_q_weight, - torch::Tensor const& s_tok, - torch::Tensor const& s_ch, - torch::Tensor const& s_group, - torch::Tensor& workspace, int64_t size_m, - int64_t size_n, int64_t size_k); #endif void static_scaled_int8_quant(torch::Tensor& out, torch::Tensor const& input, @@ -210,11 +169,6 @@ void dynamic_per_token_scaled_fp8_quant( torch::Tensor& out, torch::Tensor const& input, torch::Tensor& scale, c10::optional const& scale_ub); -void moe_align_block_size(torch::Tensor topk_ids, int64_t num_experts, - int64_t block_size, torch::Tensor sorted_token_ids, - torch::Tensor experts_ids, - torch::Tensor num_tokens_post_pad); - void selective_scan_fwd(const torch::Tensor& u, const torch::Tensor& delta, const torch::Tensor& A, const torch::Tensor& B, const torch::Tensor& C, @@ -225,21 +179,23 @@ void selective_scan_fwd(const torch::Tensor& u, const torch::Tensor& delta, const c10::optional& query_start_loc, const c10::optional& cache_indices, const c10::optional& has_initial_state, - const torch::Tensor& ssm_states); - -at::Tensor causal_conv1d_update( - const at::Tensor& x, const at::Tensor& conv_state, const at::Tensor& weight, - const c10::optional& bias_, bool silu_activation, - const c10::optional& cache_seqlens_, - const c10::optional& conv_state_indices_); - -at::Tensor causal_conv1d_fwd(const at::Tensor& x, const at::Tensor& weight, - const c10::optional& bias_, - const c10::optional& conv_states, - const c10::optional& query_start_loc, - const c10::optional& cache_indices, - const c10::optional& has_initial_state, - bool silu_activation); + const torch::Tensor& ssm_states, int64_t pad_slot_id); + +void causal_conv1d_update(const at::Tensor& x, const at::Tensor& conv_state, + const at::Tensor& weight, + const c10::optional& bias_, + bool silu_activation, + const c10::optional& cache_seqlens_, + const c10::optional& conv_state_indices_, + int64_t pad_slot_id); + +void causal_conv1d_fwd(const at::Tensor& x, const at::Tensor& weight, + const c10::optional& bias_, + const c10::optional& conv_states, + const c10::optional& query_start_loc, + const c10::optional& cache_indices, + const c10::optional& has_initial_state, + bool silu_activation, int64_t pad_slot_id); #ifndef USE_ROCM using fptr_t = int64_t; diff --git a/csrc/prepare_inputs/advance_step.cu b/csrc/prepare_inputs/advance_step.cu index 195eb27dee749..46fef79f439fb 100644 --- a/csrc/prepare_inputs/advance_step.cu +++ b/csrc/prepare_inputs/advance_step.cu @@ -17,6 +17,17 @@ __global__ void advance_step_flashattn_kernel( long const* sampled_token_ids_ptr, long* input_positions_ptr, int* seq_lens_ptr, long* slot_mapping_ptr, int const* block_tables_ptr, int64_t const block_tables_stride) { + int const n_pad = num_seqs - num_queries; + if (n_pad && blockIdx.x == 0) { + // Handle cuda graph padding + int const offset = num_queries; + for (int i = threadIdx.x; i < n_pad; i += blockDim.x) { + input_tokens_ptr[offset + i] = 0; + input_positions_ptr[offset + i] = 0; + slot_mapping_ptr[offset + i] = -1; + } + } + int num_query_blocks = div_ceil(num_queries, num_threads); if (blockIdx.x >= num_query_blocks) { diff --git a/csrc/quantization/compressed_tensors/int8_quant_kernels.cu b/csrc/quantization/compressed_tensors/int8_quant_kernels.cu index aec9fa002f96e..e9987535bd3ea 100644 --- a/csrc/quantization/compressed_tensors/int8_quant_kernels.cu +++ b/csrc/quantization/compressed_tensors/int8_quant_kernels.cu @@ -96,12 +96,15 @@ __global__ void static_scaled_int8_quant_kernel( scalar_t const* __restrict__ input, int8_t* __restrict__ out, scale_type const* scale_ptr, const int hidden_size) { int const tid = threadIdx.x; - int const token_idx = blockIdx.x; + int64_t const token_idx = blockIdx.x; scale_type const scale = *scale_ptr; + // Must be performed using 64-bit math to avoid integer overflow. + out += token_idx * hidden_size; + input += token_idx * hidden_size; + for (int i = tid; i < hidden_size; i += blockDim.x) { - out[token_idx * hidden_size + i] = float_to_int8_rn( - static_cast(input[token_idx * hidden_size + i]) / scale); + out[i] = float_to_int8_rn(static_cast(input[i]) / scale); } } @@ -111,14 +114,18 @@ __global__ void static_scaled_int8_azp_quant_kernel( scale_type const* scale_ptr, azp_type const* azp_ptr, const int hidden_size) { int const tid = threadIdx.x; - int const token_idx = blockIdx.x; + int64_t const token_idx = blockIdx.x; scale_type const scale = *scale_ptr; azp_type const azp = *azp_ptr; + // Must be performed using 64-bit math to avoid integer overflow. + out += token_idx * hidden_size; + input += token_idx * hidden_size; + for (int i = tid; i < hidden_size; i += blockDim.x) { - auto const val = static_cast(input[token_idx * hidden_size + i]); + auto const val = static_cast(input[i]); auto const quant_val = int32_to_int8(float_to_int32_rn(val / scale) + azp); - out[token_idx * hidden_size + i] = quant_val; + out[i] = quant_val; } } @@ -127,12 +134,16 @@ __global__ void dynamic_scaled_int8_quant_kernel( scalar_t const* __restrict__ input, int8_t* __restrict__ out, scale_type* scale, const int hidden_size) { int const tid = threadIdx.x; - int const token_idx = blockIdx.x; + int64_t const token_idx = blockIdx.x; float absmax_val = 0.0f; float const zero = 0.0f; + // Must be performed using 64-bit math to avoid integer overflow. + out += token_idx * hidden_size; + input += token_idx * hidden_size; + for (int i = tid; i < hidden_size; i += blockDim.x) { - float val = static_cast(input[token_idx * hidden_size + i]); + float val = static_cast(input[i]); val = val > zero ? val : -val; absmax_val = val > absmax_val ? val : absmax_val; } @@ -150,8 +161,7 @@ __global__ void dynamic_scaled_int8_quant_kernel( float const tmp_scale = 127.0f / block_absmax_val; for (int i = tid; i < hidden_size; i += blockDim.x) { - out[token_idx * hidden_size + i] = float_to_int8_rn( - static_cast(input[token_idx * hidden_size + i]) * tmp_scale); + out[i] = float_to_int8_rn(static_cast(input[i]) * tmp_scale); } } @@ -159,13 +169,17 @@ template __global__ void dynamic_scaled_int8_azp_quant_kernel( scalar_t const* __restrict__ input, int8_t* __restrict__ out, scale_type* scale, azp_type* azp, const int hidden_size) { - int const token_idx = blockIdx.x; + int64_t const token_idx = blockIdx.x; + + // Must be performed using 64-bit math to avoid integer overflow. + out += token_idx * hidden_size; + input += token_idx * hidden_size; // Scan for the min and max value for this token float max_val = std::numeric_limits::min(); float min_val = std::numeric_limits::max(); for (int i = threadIdx.x; i < hidden_size; i += blockDim.x) { - auto val = static_cast(input[token_idx * hidden_size + i]); + auto val = static_cast(input[i]); max_val = std::max(max_val, val); min_val = std::min(min_val, val); } @@ -200,10 +214,10 @@ __global__ void dynamic_scaled_int8_azp_quant_kernel( // Quantize the values for (int i = threadIdx.x; i < hidden_size; i += blockDim.x) { - auto const val = static_cast(input[token_idx * hidden_size + i]); + auto const val = static_cast(input[i]); auto const quant_val = int32_to_int8(float_to_int32_rn(val / scale_val) + azp_val); - out[token_idx * hidden_size + i] = quant_val; + out[i] = quant_val; } } diff --git a/csrc/quantization/cutlass_w8a8/scaled_mm_entry.cu b/csrc/quantization/cutlass_w8a8/scaled_mm_entry.cu index 0b1d5cfe1b338..97a969cf5e3e0 100644 --- a/csrc/quantization/cutlass_w8a8/scaled_mm_entry.cu +++ b/csrc/quantization/cutlass_w8a8/scaled_mm_entry.cu @@ -21,7 +21,7 @@ void cutlass_scaled_mm_sm89(torch::Tensor& c, torch::Tensor const& a, torch::Tensor const& b_scales, c10::optional const& bias); -#if defined CUDA_VERSION && CUDA_VERSION >= 12000 +#if defined ENABLE_SCALED_MM_C3X && ENABLE_SCALED_MM_C3X void cutlass_scaled_mm_sm90(torch::Tensor& c, torch::Tensor const& a, torch::Tensor const& b, torch::Tensor const& a_scales, @@ -114,26 +114,41 @@ void cutlass_scaled_mm(torch::Tensor& c, torch::Tensor const& a, at::cuda::OptionalCUDAGuard const device_guard(device_of(a)); int32_t version_num = get_sm_version_num(); - if (version_num >= 90) { - // Hopper + // Hopper - // Guard against compilation issues for sm90 kernels -#if defined CUDA_VERSION && CUDA_VERSION >= 12000 + // Guard against compilation issues for sm90 kernels +#if defined ENABLE_SCALED_MM_C3X && ENABLE_SCALED_MM_C3X + if (version_num >= 90) { cutlass_scaled_mm_sm90(c, a, b, a_scales, b_scales, bias); -#else - cutlass_scaled_mm_sm80(c, a, b, a_scales, b_scales, bias); + return; + } #endif - } else if (version_num == 89) { + +#if defined ENABLE_SCALED_MM_C2X && ENABLE_SCALED_MM_C2X + if (version_num == 89) { // Ada Lovelace cutlass_scaled_mm_sm89(c, a, b, a_scales, b_scales, bias); - } else if (version_num >= 80) { + return; + } + + if (version_num >= 80) { // Ampere cutlass_scaled_mm_sm80(c, a, b, a_scales, b_scales, bias); - } else { + return; + } + + if (version_num >= 75) { // Turing - TORCH_CHECK(version_num >= 75); cutlass_scaled_mm_sm75(c, a, b, a_scales, b_scales, bias); + return; } +#endif + + TORCH_CHECK_NOT_IMPLEMENTED( + false, + "No compiled cutlass_scaled_mm for a compute capability less than " + "CUDA device capability: ", + version_num); } void cutlass_scaled_mm_azp(torch::Tensor& c, torch::Tensor const& a, @@ -174,25 +189,38 @@ void cutlass_scaled_mm_azp(torch::Tensor& c, torch::Tensor const& a, "currently bias dtype must match output dtype ", c.dtype()); at::cuda::OptionalCUDAGuard const device_guard(device_of(a)); + int32_t version_num = get_sm_version_num(); - if (version_num >= 90) { - // Hopper - // Guard against compilation issues for sm90 kernels -#if defined CUDA_VERSION && CUDA_VERSION >= 12000 +#if defined ENABLE_SCALED_MM_C3X && ENABLE_SCALED_MM_C3X + if (version_num >= 90) { cutlass_scaled_mm_azp_sm90(c, a, b, a_scales, b_scales, azp_adj, azp, bias); -#else - cutlass_scaled_mm_azp_sm80(c, a, b, a_scales, b_scales, azp_adj, azp, bias); + return; + } #endif - } else if (version_num == 89) { + +#if defined ENABLE_SCALED_MM_C2X && ENABLE_SCALED_MM_C2X + if (version_num == 89) { // Ada Lovelace cutlass_scaled_mm_azp_sm89(c, a, b, a_scales, b_scales, azp_adj, azp, bias); - } else if (version_num >= 80) { + return; + } + + if (version_num >= 80) { // Ampere cutlass_scaled_mm_azp_sm80(c, a, b, a_scales, b_scales, azp_adj, azp, bias); - } else { - // Turing - TORCH_CHECK(version_num >= 75); - cutlass_scaled_mm_azp_sm75(c, a, b, a_scales, b_scales, azp_adj, azp, bias); + return; } + + // Turing + TORCH_CHECK(version_num >= 75); + cutlass_scaled_mm_azp_sm75(c, a, b, a_scales, b_scales, azp_adj, azp, bias); + return; +#endif + + TORCH_CHECK_NOT_IMPLEMENTED( + false, + "No compiled cutlass_scaled_mm_azp for a compute capability less than " + "CUDA device capability: ", + version_num); } \ No newline at end of file diff --git a/csrc/quantization/fp8/common.cu b/csrc/quantization/fp8/common.cu index 7e23f92257769..f2c609c1b68c3 100644 --- a/csrc/quantization/fp8/common.cu +++ b/csrc/quantization/fp8/common.cu @@ -204,8 +204,10 @@ __global__ void dynamic_per_token_scaled_fp8_quant_kernel( int const tid = threadIdx.x; int const token_idx = blockIdx.x; - scalar_t const* __restrict__ token_input = &input[token_idx * hidden_size]; - FP8_TYPE* __restrict__ token_output = &out[token_idx * hidden_size]; + // Use int64 to avoid overflowing an int32 when calculating this offset + int64_t offset = static_cast(token_idx) * hidden_size; + scalar_t const* __restrict__ token_input = &input[offset]; + FP8_TYPE* __restrict__ token_output = &out[offset]; // For vectorization, token_input and token_output pointers need to be // aligned at 8-byte and 4-byte addresses respectively. diff --git a/csrc/quantization/fp8/fp8_marlin.cu b/csrc/quantization/fp8/fp8_marlin.cu index eef6dc6ebdf4a..376bbd498ca52 100644 --- a/csrc/quantization/fp8/fp8_marlin.cu +++ b/csrc/quantization/fp8/fp8_marlin.cu @@ -22,6 +22,8 @@ #include "../gptq_marlin/marlin.cuh" #include "../gptq_marlin/marlin_dtypes.cuh" +#include "core/registration.h" + using namespace marlin; #define STATIC_ASSERT_SCALAR_TYPE_VALID(scalar_t) \ @@ -1303,3 +1305,7 @@ torch::Tensor fp8_marlin_gemm(torch::Tensor& a, torch::Tensor& b_q_weight, } #endif + +TORCH_LIBRARY_IMPL_EXPAND(TORCH_EXTENSION_NAME, CUDA, m) { + m.impl("fp8_marlin_gemm", &fp8_marlin_gemm); +} \ No newline at end of file diff --git a/csrc/quantization/gptq_marlin/awq_marlin_repack.cu b/csrc/quantization/gptq_marlin/awq_marlin_repack.cu index de8d9ef2ee63e..3e2f87dbc4553 100644 --- a/csrc/quantization/gptq_marlin/awq_marlin_repack.cu +++ b/csrc/quantization/gptq_marlin/awq_marlin_repack.cu @@ -1,25 +1,6 @@ #include "marlin.cuh" -#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800 - -namespace marlin { - -template -__global__ void awq_marlin_repack_kernel( - uint32_t const* __restrict__ b_q_weight_ptr, uint32_t* __restrict__ out_ptr, - int size_k, int size_n) {} - -} // namespace marlin - -torch::Tensor awq_marlin_repack(torch::Tensor& b_q_weight, torch::Tensor& perm, - int64_t size_k, int64_t size_n, - int64_t num_bits) { - TORCH_CHECK_NOT_IMPLEMENTED( - false, "marlin_repack_from_gptq(..) requires CUDA_ARCH >= 8.0"); - return torch::empty({1, 1}); -} - -#else +#include "core/registration.h" namespace marlin { @@ -122,7 +103,7 @@ __global__ void awq_marlin_repack_kernel( } uint32_t vals[8]; - #pragma unroll +#pragma unroll for (int i = 0; i < 4; i++) { int cur_elem = tc_row + tc_offsets[i]; @@ -143,7 +124,7 @@ __global__ void awq_marlin_repack_kernel( constexpr int pack_idx[8] = {0, 2, 4, 6, 1, 3, 5, 7}; uint32_t res = 0; - #pragma unroll +#pragma unroll for (int i = 0; i < 8; i++) { res |= vals[pack_idx[i]] << (i * 4); } @@ -155,7 +136,7 @@ __global__ void awq_marlin_repack_kernel( uint32_t res1 = 0; uint32_t res2 = 0; - #pragma unroll +#pragma unroll for (int i = 0; i < 4; i++) { res1 |= vals[pack_idx[i]] << (i * 8); res2 |= vals[4 + pack_idx[i]] << (i * 8); @@ -167,21 +148,21 @@ __global__ void awq_marlin_repack_kernel( }; auto start_pipes = [&](int k_tile_id, int n_tile_id) { - #pragma unroll +#pragma unroll for (int pipe = 0; pipe < repack_stages - 1; pipe++) { fetch_to_shared(pipe, k_tile_id, n_tile_id + pipe); } wait_for_stage(); }; - #pragma unroll +#pragma unroll for (int k_tile_id = start_k_tile; k_tile_id < finish_k_tile; k_tile_id++) { int n_tile_id = 0; start_pipes(k_tile_id, n_tile_id); while (n_tile_id < n_tiles) { - #pragma unroll +#pragma unroll for (int pipe = 0; pipe < repack_stages; pipe++) { fetch_to_shared((pipe + repack_stages - 1) % repack_stages, k_tile_id, n_tile_id + pipe + repack_stages - 1); @@ -195,15 +176,15 @@ __global__ void awq_marlin_repack_kernel( } // namespace marlin - #define CALL_IF(NUM_BITS) \ - else if (num_bits == NUM_BITS) { \ - cudaFuncSetAttribute( \ - marlin::awq_marlin_repack_kernel, \ - cudaFuncAttributeMaxDynamicSharedMemorySize, max_shared_mem); \ - marlin::awq_marlin_repack_kernel \ - <<>>( \ - b_q_weight_ptr, out_ptr, size_k, size_n); \ - } +#define CALL_IF(NUM_BITS) \ + else if (num_bits == NUM_BITS) { \ + cudaFuncSetAttribute( \ + marlin::awq_marlin_repack_kernel, \ + cudaFuncAttributeMaxDynamicSharedMemorySize, max_shared_mem); \ + marlin::awq_marlin_repack_kernel \ + <<>>( \ + b_q_weight_ptr, out_ptr, size_k, size_n); \ + } torch::Tensor awq_marlin_repack(torch::Tensor& b_q_weight, int64_t size_k, int64_t size_n, int64_t num_bits) { @@ -266,8 +247,6 @@ torch::Tensor awq_marlin_repack(torch::Tensor& b_q_weight, int64_t size_k, return out; } -#endif - torch::Tensor awq_marlin_repack_meta(torch::Tensor& b_q_weight, c10::SymInt size_k, c10::SymInt size_n, int64_t num_bits) { @@ -279,3 +258,11 @@ torch::Tensor awq_marlin_repack_meta(torch::Tensor& b_q_weight, {size_k / marlin::tile_size, size_n * marlin::tile_size / pack_factor}, options); } + +TORCH_LIBRARY_IMPL_EXPAND(TORCH_EXTENSION_NAME, CUDA, m) { + m.impl("awq_marlin_repack", &awq_marlin_repack); +} + +TORCH_LIBRARY_IMPL_EXPAND(TORCH_EXTENSION_NAME, Meta, m) { + m.impl("awq_marlin_repack", &awq_marlin_repack_meta); +} \ No newline at end of file diff --git a/csrc/quantization/gptq_marlin/gptq_marlin.cu b/csrc/quantization/gptq_marlin/gptq_marlin.cu index 9b4a6a515107d..6dbf9594e8492 100644 --- a/csrc/quantization/gptq_marlin/gptq_marlin.cu +++ b/csrc/quantization/gptq_marlin/gptq_marlin.cu @@ -23,6 +23,8 @@ #include "marlin_dtypes.cuh" #include "core/scalar_type.hpp" +#include "core/registration.h" + #define STATIC_ASSERT_SCALAR_TYPE_VALID(scalar_t) \ static_assert(std::is_same::value || \ std::is_same::value, \ @@ -78,7 +80,7 @@ torch::Tensor gptq_marlin_gemm(torch::Tensor& a, torch::Tensor& b_q_weight, torch::Tensor& b_scales, torch::Tensor& b_zeros, torch::Tensor& g_idx, torch::Tensor& perm, torch::Tensor& workspace, - vllm::ScalarTypeTorchPtr const& b_q_type, + vllm::ScalarTypeId const b_q_type_id, int64_t size_m, int64_t size_n, int64_t size_k, bool is_k_full, bool has_zp) { TORCH_CHECK_NOT_IMPLEMENTED(false, @@ -2130,22 +2132,23 @@ torch::Tensor gptq_marlin_gemm(torch::Tensor& a, torch::Tensor& b_q_weight, torch::Tensor& b_scales, torch::Tensor& b_zeros, torch::Tensor& g_idx, torch::Tensor& perm, torch::Tensor& workspace, - vllm::ScalarTypeTorchPtr const& b_q_type, + vllm::ScalarTypeId const& b_q_type_id, int64_t size_m, int64_t size_n, int64_t size_k, bool is_k_full, bool has_zp, bool use_fp32_reduce) { + vllm::ScalarType const b_q_type = vllm::ScalarType::from_id(b_q_type_id); if (has_zp) { - TORCH_CHECK(*b_q_type == vllm::kU4 || *b_q_type == vllm::kU8, - "b_q_type must be u4 or u8 when has_zp = True. Got = ", - b_q_type->str()); + TORCH_CHECK( + b_q_type == vllm::kU4 || b_q_type == vllm::kU8, + "b_q_type must be u4 or u8 when has_zp = True. Got = ", b_q_type.str()); } else { TORCH_CHECK( - *b_q_type == vllm::kU4B8 || *b_q_type == vllm::kU8B128, + b_q_type == vllm::kU4B8 || b_q_type == vllm::kU8B128, "b_q_type must be uint4b8 or uint8b128 when has_zp = False. Got = ", - b_q_type->str()); + b_q_type.str()); } - int pack_factor = 32 / b_q_type->size_bits(); + int pack_factor = 32 / b_q_type.size_bits(); // Verify A TORCH_CHECK(a.size(0) == size_m, "Shape mismatch: a.size(0) = ", a.size(0), @@ -2258,7 +2261,7 @@ torch::Tensor gptq_marlin_gemm(torch::Tensor& a, torch::Tensor& b_q_weight, "b_zeros dim 0 = ", b_zeros.size(0), " is not num_groups = ", num_groups); TORCH_CHECK(b_zeros.size(1) == size_n / pack_factor, - "b_zeros dim 1 = ", b_scales.size(1), + "b_zeros dim 1 = ", b_zeros.size(1), " is not size_n / pack_factor = ", size_n / pack_factor); } @@ -2277,7 +2280,7 @@ torch::Tensor gptq_marlin_gemm(torch::Tensor& a, torch::Tensor& b_q_weight, c_tmp.data_ptr(), b_scales.data_ptr(), b_zeros.data_ptr(), g_idx.data_ptr(), perm.data_ptr(), a_tmp.data_ptr(), size_m, size_n, size_k, - workspace.data_ptr(), *b_q_type, has_act_order, is_k_full, has_zp, + workspace.data_ptr(), b_q_type, has_act_order, is_k_full, has_zp, num_groups, group_size, dev, at::cuda::getCurrentCUDAStream(dev), thread_k, thread_n, sms, marlin::max_par, use_fp32_reduce); } else if (a.scalar_type() == at::ScalarType::BFloat16) { @@ -2286,7 +2289,7 @@ torch::Tensor gptq_marlin_gemm(torch::Tensor& a, torch::Tensor& b_q_weight, c.data_ptr(), c_tmp.data_ptr(), b_scales.data_ptr(), b_zeros.data_ptr(), g_idx.data_ptr(), perm.data_ptr(), a_tmp.data_ptr(), size_m, size_n, size_k, - workspace.data_ptr(), *b_q_type, has_act_order, is_k_full, has_zp, + workspace.data_ptr(), b_q_type, has_act_order, is_k_full, has_zp, num_groups, group_size, dev, at::cuda::getCurrentCUDAStream(dev), thread_k, thread_n, sms, marlin::max_par, use_fp32_reduce); } else { @@ -2297,3 +2300,7 @@ torch::Tensor gptq_marlin_gemm(torch::Tensor& a, torch::Tensor& b_q_weight, } #endif + +TORCH_LIBRARY_IMPL_EXPAND(TORCH_EXTENSION_NAME, CUDA, m) { + m.impl("gptq_marlin_gemm", &gptq_marlin_gemm); +} diff --git a/csrc/quantization/gptq_marlin/gptq_marlin_repack.cu b/csrc/quantization/gptq_marlin/gptq_marlin_repack.cu index 70d48de12ab05..5cd078555046d 100644 --- a/csrc/quantization/gptq_marlin/gptq_marlin_repack.cu +++ b/csrc/quantization/gptq_marlin/gptq_marlin_repack.cu @@ -1,26 +1,6 @@ #include "marlin.cuh" -#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800 - -namespace marlin { - -template -__global__ void gptq_marlin_repack_kernel( - uint32_t const* __restrict__ b_q_weight_ptr, - uint32_t const* __restrict__ perm_ptr, uint32_t* __restrict__ out_ptr, - int size_k, int size_n) {} - -} // namespace marlin - -torch::Tensor gptq_marlin_repack(torch::Tensor& b_q_weight, torch::Tensor& perm, - int64_t size_k, int64_t size_n, - int64_t num_bits) { - TORCH_CHECK_NOT_IMPLEMENTED( - false, "marlin_repack_from_gptq(..) requires CUDA_ARCH >= 8.0"); - return torch::empty({1, 1}); -} - -#else +#include "core/registration.h" namespace marlin { @@ -174,13 +154,13 @@ __global__ void gptq_marlin_repack_kernel( uint32_t b1_vals[tile_ints]; uint32_t b2_vals[tile_ints]; - #pragma unroll +#pragma unroll for (int i = 0; i < tile_ints; i++) { b1_vals[i] = sh_stage_int_ptr[cur_n + sh_stride * i]; b2_vals[i] = sh_stage_int_ptr[cur_n + 8 + sh_stride * i]; } - #pragma unroll +#pragma unroll for (int i = 0; i < 4; i++) { int cur_elem = tc_row + tc_offsets[i]; int cur_int = cur_elem / pack_factor; @@ -200,7 +180,7 @@ __global__ void gptq_marlin_repack_kernel( constexpr int pack_idx[8] = {0, 2, 4, 6, 1, 3, 5, 7}; uint32_t res = 0; - #pragma unroll +#pragma unroll for (int i = 0; i < 8; i++) { res |= vals[pack_idx[i]] << (i * 4); } @@ -212,7 +192,7 @@ __global__ void gptq_marlin_repack_kernel( uint32_t res1 = 0; uint32_t res2 = 0; - #pragma unroll +#pragma unroll for (int i = 0; i < 4; i++) { res1 |= vals[pack_idx[i]] << (i * 8); res2 |= vals[4 + pack_idx[i]] << (i * 8); @@ -224,14 +204,14 @@ __global__ void gptq_marlin_repack_kernel( }; auto start_pipes = [&](int k_tile_id, int n_tile_id) { - #pragma unroll +#pragma unroll for (int pipe = 0; pipe < repack_stages - 1; pipe++) { fetch_to_shared(pipe, k_tile_id, n_tile_id + pipe); } wait_for_stage(); }; - #pragma unroll +#pragma unroll for (int k_tile_id = start_k_tile; k_tile_id < finish_k_tile; k_tile_id++) { int n_tile_id = 0; @@ -242,7 +222,7 @@ __global__ void gptq_marlin_repack_kernel( start_pipes(k_tile_id, n_tile_id); while (n_tile_id < n_tiles) { - #pragma unroll +#pragma unroll for (int pipe = 0; pipe < repack_stages; pipe++) { fetch_to_shared((pipe + repack_stages - 1) % repack_stages, k_tile_id, n_tile_id + pipe + repack_stages - 1); @@ -256,17 +236,17 @@ __global__ void gptq_marlin_repack_kernel( } // namespace marlin - #define CALL_IF(NUM_BITS, HAS_PERM) \ - else if (num_bits == NUM_BITS && has_perm == HAS_PERM) { \ - cudaFuncSetAttribute( \ - marlin::gptq_marlin_repack_kernel, \ - cudaFuncAttributeMaxDynamicSharedMemorySize, max_shared_mem); \ - marlin::gptq_marlin_repack_kernel \ - <<>>( \ - b_q_weight_ptr, perm_ptr, out_ptr, size_k, size_n); \ - } +#define CALL_IF(NUM_BITS, HAS_PERM) \ + else if (num_bits == NUM_BITS && has_perm == HAS_PERM) { \ + cudaFuncSetAttribute( \ + marlin::gptq_marlin_repack_kernel, \ + cudaFuncAttributeMaxDynamicSharedMemorySize, max_shared_mem); \ + marlin::gptq_marlin_repack_kernel \ + <<>>( \ + b_q_weight_ptr, perm_ptr, out_ptr, size_k, size_n); \ + } torch::Tensor gptq_marlin_repack(torch::Tensor& b_q_weight, torch::Tensor& perm, int64_t size_k, int64_t size_n, @@ -341,8 +321,6 @@ torch::Tensor gptq_marlin_repack(torch::Tensor& b_q_weight, torch::Tensor& perm, return out; } -#endif - torch::Tensor gptq_marlin_repack_meta(torch::Tensor& b_q_weight, torch::Tensor& perm, c10::SymInt size_k, c10::SymInt size_n, int64_t num_bits) { @@ -354,3 +332,11 @@ torch::Tensor gptq_marlin_repack_meta(torch::Tensor& b_q_weight, {size_k / marlin::tile_size, size_n * marlin::tile_size / pack_factor}, options); } + +TORCH_LIBRARY_IMPL_EXPAND(TORCH_EXTENSION_NAME, CUDA, m) { + m.impl("gptq_marlin_repack", &gptq_marlin_repack); +} + +TORCH_LIBRARY_IMPL_EXPAND(TORCH_EXTENSION_NAME, Meta, m) { + m.impl("gptq_marlin_repack", &gptq_marlin_repack_meta); +} \ No newline at end of file diff --git a/csrc/quantization/machete/generate.py b/csrc/quantization/machete/generate.py index 8ed81ea727aa3..ebbe76cfb944a 100644 --- a/csrc/quantization/machete/generate.py +++ b/csrc/quantization/machete/generate.py @@ -284,7 +284,7 @@ def create_template(template_str): prepack_dispatch_template = create_template(PREPACK_TEMPLATE) -def create_sources(impl_config: ImplConfig, num_impl_files=2): +def create_sources(impl_config: ImplConfig, num_impl_files=1): sources = [] type_name = generate_type_signature(impl_config.type_config) @@ -457,7 +457,13 @@ def generate(): )), ] - schedules = list(set([x[1] for x in default_heuristic])) + # Do not use schedules = list(set(...)) because we need to make sure + # the output list is deterministic; otherwise the generated kernel file + # will be non-deterministic and causes ccache miss. + schedules = [] + for _, schedule_config in default_heuristic: + if schedule_config not in schedules: + schedules.append(schedule_config) impl_configs = [] diff --git a/csrc/quantization/machete/machete_mainloop.cuh b/csrc/quantization/machete/machete_mainloop.cuh index 3d574ad99efda..e8e7b14de0da1 100644 --- a/csrc/quantization/machete/machete_mainloop.cuh +++ b/csrc/quantization/machete/machete_mainloop.cuh @@ -591,24 +591,27 @@ struct MacheteCollectiveMma { tma_load_b = make_tma_copy_B( make_logical_tensor(ptr_B, make_shape(N, K, L), args.dB)); + int32_t scale_k = + (ModeHasScales) ? (K + args.group_size - 1) / args.group_size : 0; + int32_t group_size = (ModeHasScales) ? args.group_size : 0; + if constexpr (ModeHasScales) { - tma_load_scale = make_tma_copy_scale(make_logical_tensor( - args.ptr_S, make_shape(M, args.group_size, L), args.dS)); + tma_load_scale = make_tma_copy_scale( + make_logical_tensor(args.ptr_S, make_shape(M, scale_k, L), args.dS)); } if constexpr (KernelConversionMode == ConversionMode::ConvertAndScaleWithZero) { - tma_load_zero = make_tma_copy_zero(make_logical_tensor( - args.ptr_Z, make_shape(M, args.group_size, L), args.dS)); + tma_load_zero = make_tma_copy_zero( + make_logical_tensor(args.ptr_Z, make_shape(M, scale_k, L), args.dS)); } - if constexpr (KernelConversionMode == ConversionMode::DirectConvert) { - return {tma_load_a, tma_load_b, tma_load_scale, tma_load_zero, 0, 0}; - } else if constexpr (ModeHasScales) { - auto scale_k = (K + args.group_size - 1) / args.group_size; - + if constexpr (KernelConversionMode == ConversionMode::DirectConvert || + KernelConversionMode == ConversionMode::ConvertAndScale || + KernelConversionMode == + ConversionMode::ConvertAndScaleWithZero) { return {tma_load_a, tma_load_b, tma_load_scale, - tma_load_zero, scale_k, args.group_size}; + tma_load_zero, scale_k, group_size}; } else { static_assert(cutlass::detail::dependent_false, "Conversion mode not handled in to_underlying_arguments."); diff --git a/csrc/quantization/machete/machete_prepack_kernel.cuh b/csrc/quantization/machete/machete_prepack_kernel.cuh index 8e02104587d17..f23483f928b47 100644 --- a/csrc/quantization/machete/machete_prepack_kernel.cuh +++ b/csrc/quantization/machete/machete_prepack_kernel.cuh @@ -34,10 +34,9 @@ static __global__ void prepack_B_kernel(BInTensor B_in, } template -static void prepack_B(cudaStream_t stream, - typename PrepackedLayoutB::ElementB const* B_in_ptr, - InLayout B_layout, - typename PrepackedLayoutB::ElementB* B_out_ptr) { +static void prepack_B_template( + cudaStream_t stream, typename PrepackedLayoutB::ElementB const* B_in_ptr, + InLayout B_layout, typename PrepackedLayoutB::ElementB* B_out_ptr) { using TileShapeNKL = decltype(append(typename PrepackedLayoutB::PPBlockShape_NK{}, _1{})); auto ilvd_NKbNbKL_to_offset = diff --git a/csrc/quantization/machete/machete_prepack_launcher.cuh b/csrc/quantization/machete/machete_prepack_launcher.cuh index df78312997fb0..a33d8f9484cfe 100644 --- a/csrc/quantization/machete/machete_prepack_launcher.cuh +++ b/csrc/quantization/machete/machete_prepack_launcher.cuh @@ -55,8 +55,8 @@ torch::Tensor prepack_impl(torch::Tensor const B) { // Allocate output torch::Tensor D = torch::empty_like(B, {}, at::MemoryFormat::Contiguous); - prepack_B(stream, B_ptr, layout_Bt, - static_cast(D.mutable_data_ptr())); + prepack_B_template( + stream, B_ptr, layout_Bt, static_cast(D.mutable_data_ptr())); return D; }; diff --git a/csrc/quantization/machete/machete_pytorch.cu b/csrc/quantization/machete/machete_pytorch.cu index a78cccb2358ee..9f9073ded6191 100644 --- a/csrc/quantization/machete/machete_pytorch.cu +++ b/csrc/quantization/machete/machete_pytorch.cu @@ -2,6 +2,8 @@ #include "machete_prepack_launcher.cuh" #include "core/scalar_type.hpp" +#include "core/registration.h" + namespace machete { using namespace vllm; @@ -36,9 +38,10 @@ static auto scalar_type_dispatch(ScalarType const& type, Fn fn) { // Interface // -std::vector supported_schedules(ScalarTypeTorchPtr const& btype) { +std::vector supported_schedules(ScalarTypeId const btype_id) { #if defined(__CUDACC_VER_MAJOR__) && __CUDACC_VER_MAJOR__ >= 12 - return scalar_type_dispatch(*btype, [&](auto BType) { + vllm::ScalarType b_type = ScalarType::from_id(btype_id); + return scalar_type_dispatch(b_type, [&](auto BType) { return GemmDispatcher::supported_schedules(); }); #else @@ -47,7 +50,7 @@ std::vector supported_schedules(ScalarTypeTorchPtr const& btype) { } torch::Tensor gemm(torch::Tensor const& A, torch::Tensor const& B, - ScalarTypeTorchPtr const& btype, + ScalarTypeId const btype_id, c10::optional const& scales, c10::optional const& zeros, c10::optional group_size, @@ -55,6 +58,7 @@ torch::Tensor gemm(torch::Tensor const& A, torch::Tensor const& B, c10::optional alpha, c10::optional beta, c10::optional schedule) { #if defined(__CUDACC_VER_MAJOR__) && __CUDACC_VER_MAJOR__ >= 12 + ScalarType const btype = ScalarType::from_id(btype_id); auto args = PyTorchArguments{.A = A, .B = B, .scales = scales, @@ -65,7 +69,7 @@ torch::Tensor gemm(torch::Tensor const& A, torch::Tensor const& B, .beta = beta, .schedule = schedule}; - return scalar_type_dispatch(*btype, [&](auto BType) { + return scalar_type_dispatch(btype, [&](auto BType) { return AT_DISPATCH_SUPPORTED_COMPUTE_TYPES( A.scalar_type(), "machete_gemm", [&] { using ComputeType = equivalent_cutlass_type_t; @@ -77,15 +81,21 @@ torch::Tensor gemm(torch::Tensor const& A, torch::Tensor const& B, #endif } -torch::Tensor prepack_B(torch::Tensor const& B, - ScalarTypeTorchPtr const& btype) { -#if defined(__CUDACC_VER_MAJOR__) && __CUDACC_VER_MAJOR__ >= 12 - return scalar_type_dispatch(*btype, [&](auto BType) { +torch::Tensor prepack_B(torch::Tensor const& B, ScalarTypeId const btype_id) { + ScalarType const btype = ScalarType::from_id(btype_id); + return scalar_type_dispatch(btype, [&](auto BType) { return PrepackBDispatcher::dispatch(B); }); -#else - TORCH_CHECK(false, "Machete requires CUDA 12.0 or later"); -#endif +} + +TORCH_LIBRARY_IMPL_EXPAND(TORCH_EXTENSION_NAME, CUDA, m) { + m.impl("machete_prepack_B", &prepack_B); + m.impl("machete_gemm", &gemm); +} + +// use CatchAll since supported_schedules has no tensor arguments +TORCH_LIBRARY_IMPL(TORCH_EXTENSION_NAME, CatchAll, m) { + m.impl("machete_supported_schedules", &supported_schedules); } }; // namespace machete diff --git a/csrc/quantization/marlin/dense/marlin_cuda_kernel.cu b/csrc/quantization/marlin/dense/marlin_cuda_kernel.cu index 1ce734c9d90de..c03fef886e4db 100644 --- a/csrc/quantization/marlin/dense/marlin_cuda_kernel.cu +++ b/csrc/quantization/marlin/dense/marlin_cuda_kernel.cu @@ -26,6 +26,7 @@ #include #include "common/base.h" +#include "core/registration.h" #if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800 #include "common/mem.h" @@ -1066,3 +1067,7 @@ torch::Tensor marlin_gemm(torch::Tensor& a, torch::Tensor& b_q_weight, return c; } + +TORCH_LIBRARY_IMPL_EXPAND(TORCH_EXTENSION_NAME, CUDA, m) { + m.impl("marlin_gemm", &marlin_gemm); +} diff --git a/csrc/quantization/marlin/qqq/marlin_qqq_gemm_kernel.cu b/csrc/quantization/marlin/qqq/marlin_qqq_gemm_kernel.cu index 4162a38af1035..103a6444f3a21 100644 --- a/csrc/quantization/marlin/qqq/marlin_qqq_gemm_kernel.cu +++ b/csrc/quantization/marlin/qqq/marlin_qqq_gemm_kernel.cu @@ -30,6 +30,7 @@ #include #include "../dense/common/base.h" +#include "core/registration.h" #if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800 #include "../dense/common/mem.h" @@ -1241,3 +1242,7 @@ torch::Tensor marlin_qqq_gemm(torch::Tensor const& a, return d; } + +TORCH_LIBRARY_IMPL_EXPAND(TORCH_EXTENSION_NAME, CUDA, m) { + m.impl("marlin_qqq_gemm", &marlin_qqq_gemm); +} diff --git a/csrc/quantization/marlin/sparse/marlin_24_cuda_kernel.cu b/csrc/quantization/marlin/sparse/marlin_24_cuda_kernel.cu index 93445a386593b..a33e2660d760e 100644 --- a/csrc/quantization/marlin/sparse/marlin_24_cuda_kernel.cu +++ b/csrc/quantization/marlin/sparse/marlin_24_cuda_kernel.cu @@ -28,6 +28,7 @@ #include "common/base.h" #include "core/scalar_type.hpp" +#include "core/registration.h" #if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800 @@ -88,7 +89,7 @@ torch::Tensor gptq_marlin_24_gemm(torch::Tensor& a, torch::Tensor& b_q_weight, torch::Tensor& b_meta, torch::Tensor& b_scales, torch::Tensor& workspace, - vllm::ScalarTypeTorchPtr const& b_q_type, + vllm::ScalarTypeId const b_q_type_id, int64_t size_m, int64_t size_n, int64_t size_k) { TORCH_CHECK_NOT_IMPLEMENTED( @@ -1028,13 +1029,14 @@ torch::Tensor gptq_marlin_24_gemm(torch::Tensor& a, torch::Tensor& b_q_weight, torch::Tensor& b_meta, torch::Tensor& b_scales, torch::Tensor& workspace, - vllm::ScalarTypeTorchPtr const& b_q_type, + vllm::ScalarTypeId const b_q_type_id, int64_t size_m, int64_t size_n, int64_t size_k) { + vllm::ScalarType const b_q_type = vllm::ScalarType::from_id(b_q_type_id); // Verify num_bits - TORCH_CHECK(*b_q_type == vllm::kU4B8 || *b_q_type == vllm::kU8B128, - "num_bits must be uint4b8 or uint8b128. Got = ", b_q_type->str()); - int pack_factor = 32 / b_q_type->size_bits(); + TORCH_CHECK(b_q_type == vllm::kU4B8 || b_q_type == vllm::kU8B128, + "num_bits must be uint4b8 or uint8b128. Got = ", b_q_type.str()); + int pack_factor = 32 / b_q_type.size_bits(); // Verify M TORCH_CHECK(size_m == a.size(0), @@ -1129,8 +1131,12 @@ torch::Tensor gptq_marlin_24_gemm(torch::Tensor& a, torch::Tensor& b_q_weight, marlin_24::marlin_cuda_2_4( a.data_ptr(), b_q_weight.data_ptr(), b_meta.data_ptr(), c.data_ptr(), b_scales.data_ptr(), size_n, size_m, size_k, workspace.data_ptr(), - b_q_type->size_bits(), groupsize, dev, - at::cuda::getCurrentCUDAStream(dev), thread_k, thread_m, sms, max_par); + b_q_type.size_bits(), groupsize, dev, at::cuda::getCurrentCUDAStream(dev), + thread_k, thread_m, sms, max_par); return c; } + +TORCH_LIBRARY_IMPL_EXPAND(TORCH_EXTENSION_NAME, CUDA, m) { + m.impl("gptq_marlin_24_gemm", &gptq_marlin_24_gemm); +} diff --git a/csrc/torch_bindings.cpp b/csrc/torch_bindings.cpp index 3538f2850f915..b8185c24d5628 100644 --- a/csrc/torch_bindings.cpp +++ b/csrc/torch_bindings.cpp @@ -18,6 +18,9 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) { // vLLM custom ops + ops.def("weak_ref_tensor(Tensor input) -> Tensor"); + ops.impl("weak_ref_tensor", torch::kCUDA, &weak_ref_tensor); + // Attention ops // Compute the attention between an input query and the cached // keys/values using PagedAttention. @@ -60,6 +63,10 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) { ops.def("gelu_tanh_and_mul(Tensor! out, Tensor input) -> ()"); ops.impl("gelu_tanh_and_mul", torch::kCUDA, &gelu_tanh_and_mul); + // FATReLU implementation. + ops.def("fatrelu_and_mul(Tensor! out, Tensor input, float threshold) -> ()"); + ops.impl("fatrelu_and_mul", torch::kCUDA, &fatrelu_and_mul); + // GELU implementation used in GPT-2. ops.def("gelu_new(Tensor! out, Tensor input) -> ()"); ops.impl("gelu_new", torch::kCUDA, &gelu_new); @@ -140,13 +147,13 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) { // Quantized GEMM for AWQ. ops.def( "awq_gemm(Tensor _in_feats, Tensor _kernel, Tensor _scaling_factors, " - "Tensor _zeros, int split_k_iters) -> Tensor"); + "Tensor _zeros, SymInt split_k_iters) -> Tensor"); ops.impl("awq_gemm", torch::kCUDA, &awq_gemm); // Dequantization for AWQ. ops.def( "awq_dequantize(Tensor _kernel, Tensor _scaling_factors, " - "Tensor _zeros, int split_k_iters, int thx, int thy) -> Tensor"); + "Tensor _zeros, SymInt split_k_iters, int thx, int thy) -> Tensor"); ops.impl("awq_dequantize", torch::kCUDA, &awq_dequantize); // Note about marlin kernel 'workspace' arguments: @@ -166,31 +173,27 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) { // Marlin (Dense) Optimized Quantized GEMM for GPTQ. ops.def( "marlin_gemm(Tensor a, Tensor b_q_weight, Tensor b_scales, " - "Tensor! workspace, int size_m, int size_n, int size_k) -> Tensor"); - ops.impl("marlin_gemm", torch::kCUDA, &marlin_gemm); + "Tensor! workspace, SymInt size_m, SymInt size_n, SymInt size_k) -> " + "Tensor"); + // conditionally compiled so impl in source file // Marlin_24 (Sparse) Optimized Quantized GEMM for GPTQ. ops.def( "gptq_marlin_24_gemm(Tensor a, Tensor b_q_weight, Tensor b_meta, " "Tensor b_scales, Tensor workspace, " - "__torch__.torch.classes._core_C.ScalarType b_q_type, " - "int size_m, int size_n, int size_k) -> Tensor"); - ops.impl("gptq_marlin_24_gemm", torch::kCUDA, &gptq_marlin_24_gemm); + "int b_q_type, " + "SymInt size_m, SymInt size_n, SymInt size_k) -> Tensor"); + // conditionally compiled so impl in source file // Machete (Dense) Optimized Mixed Precision GEMM for Hopper. - ops.def("machete_supported_schedules", &machete::supported_schedules); + ops.def("machete_supported_schedules(int btype) -> str[]"); ops.def( - "machete_gemm(Tensor A, Tensor B," - " __torch__.torch.classes._core_C.ScalarType btype," - " Tensor? scales, Tensor? zeros, int? group_size," + "machete_gemm(Tensor A, Tensor B, int btype, " + " Tensor? scales, Tensor? zeros, int? group_size, " " Tensor? C, float? alpha, float? beta, str? schedule)" "-> Tensor"); - ops.impl("machete_gemm", torch::kCUDA, &machete::gemm); - ops.def( - "machete_prepack_B(Tensor B," - " __torch__.torch.classes._core_C.ScalarType btype)" - "-> Tensor"); - ops.impl("machete_prepack_B", torch::kCUDA, &machete::prepack_B); + ops.def("machete_prepack_B(Tensor B, int btype) -> Tensor"); + // conditionally compiled so impl registration is in source file ops.def("permute_cols(Tensor A, Tensor perm) -> Tensor"); ops.impl("permute_cols", torch::kCUDA, &permute_cols); @@ -199,53 +202,52 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) { ops.def( "gptq_marlin_gemm(Tensor a, Tensor b_q_weight, Tensor b_scales, " "Tensor b_zeros, Tensor g_idx, Tensor perm, Tensor workspace, " - "__torch__.torch.classes._core_C.ScalarType b_q_type, " - "int size_m, int size_n, int size_k, bool is_k_full, " + "int b_q_type, " + "SymInt size_m, SymInt size_n, SymInt size_k, bool is_k_full, " "bool has_zp, bool use_fp32_reduce) -> Tensor"); - ops.impl("gptq_marlin_gemm", torch::kCUDA, &gptq_marlin_gemm); + // conditionally compiled so impl registration is in source file // gptq_marlin repack from GPTQ. ops.def( "gptq_marlin_repack(Tensor b_q_weight, Tensor perm, " "SymInt size_k, SymInt size_n, int num_bits) -> Tensor"); - ops.impl("gptq_marlin_repack", torch::kCUDA, &gptq_marlin_repack); - ops.impl("gptq_marlin_repack", torch::kMeta, &gptq_marlin_repack_meta); + // conditionally compiled so impl registrations are in source file // awq_marlin repack from AWQ. ops.def( "awq_marlin_repack(Tensor b_q_weight, SymInt size_k, " "SymInt size_n, int num_bits) -> Tensor"); - ops.impl("awq_marlin_repack", torch::kCUDA, &awq_marlin_repack); - ops.impl("awq_marlin_repack", torch::kMeta, &awq_marlin_repack_meta); + // conditionally compiled so impl registrations are in source file // Dequantization for GGML. - ops.def("ggml_dequantize(Tensor W, int type, int m, int n) -> Tensor"); + ops.def("ggml_dequantize(Tensor W, int type, SymInt m, SymInt n) -> Tensor"); ops.impl("ggml_dequantize", torch::kCUDA, &ggml_dequantize); // mmvq kernel for GGML. ops.def( - "ggml_mul_mat_vec_a8(Tensor W, Tensor X, int type, int row) " + "ggml_mul_mat_vec_a8(Tensor W, Tensor X, int type, SymInt row) " "-> Tensor"); ops.impl("ggml_mul_mat_vec_a8", torch::kCUDA, &ggml_mul_mat_vec_a8); // mmq kernel for GGML. - ops.def("ggml_mul_mat_a8(Tensor W, Tensor X, int type, int row) -> Tensor"); + ops.def( + "ggml_mul_mat_a8(Tensor W, Tensor X, int type, SymInt row) -> Tensor"); ops.impl("ggml_mul_mat_a8", torch::kCUDA, &ggml_mul_mat_a8); // fp8_marlin Optimized Quantized GEMM for FP8 weight-only. ops.def( "fp8_marlin_gemm(Tensor a, Tensor b_q_weight, Tensor b_scales, " - "Tensor! workspace, int num_bits, int size_m, int size_n, " - "int size_k) -> Tensor"); - ops.impl("fp8_marlin_gemm", torch::kCUDA, &fp8_marlin_gemm); + "Tensor! workspace, int num_bits, SymInt size_m, SymInt size_n, " + "SymInt size_k) -> Tensor"); + // conditionally compiled so impl registration is in source file // marlin_qqq_gemm for QQQ. ops.def( "marlin_qqq_gemm(Tensor a, Tensor b_q_weight, " "Tensor s_tok, Tensor s_ch, Tensor s_group, " - "Tensor! workspace, int size_m, int size_n, " - "int size_k) -> Tensor"); - ops.impl("marlin_qqq_gemm", torch::kCUDA, &marlin_qqq_gemm); + "Tensor! workspace, SymInt size_m, SymInt size_n, " + "SymInt size_k) -> Tensor"); + // conditionally compiled so impl registration is in source file // CUTLASS w8a8 GEMM, supporting symmetric per-tensor or per-row/column // quantization, as well as bias @@ -278,7 +280,8 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) { "Tensor? query_start_loc," "Tensor? cache_indices," "Tensor? has_initial_state," - "Tensor! ssm_states) -> ()"); + "Tensor! ssm_states," + "int pad_slot_id) -> ()"); ops.impl("selective_scan_fwd", torch::kCUDA, &selective_scan_fwd); ops.def( @@ -288,7 +291,8 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) { "Tensor? bias_," "bool silu_activation," "Tensor? cache_seqlens_," - "Tensor? conv_state_indices) -> Tensor"); + "Tensor? conv_state_indices," + "int pad_slot_id) -> ()"); ops.impl("causal_conv1d_update", torch::kCUDA, &causal_conv1d_update); ops.def( @@ -298,7 +302,8 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) { "Tensor? query_start_loc," "Tensor? cache_indices," "Tensor? has_initial_state," - "bool silu_activation) -> Tensor"); + "bool silu_activation," + "int pad_slot_id) -> ()"); ops.impl("causal_conv1d_fwd", torch::kCUDA, &causal_conv1d_fwd); #endif @@ -334,15 +339,6 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) { ops.impl("dynamic_per_token_scaled_fp8_quant", torch::kCUDA, &dynamic_per_token_scaled_fp8_quant); - // Aligning the number of tokens to be processed by each expert such - // that it is divisible by the block size. - ops.def( - "moe_align_block_size(Tensor topk_ids, int num_experts," - " int block_size, Tensor! sorted_token_ids," - " Tensor! experts_ids," - " Tensor! num_tokens_post_pad) -> ()"); - ops.impl("moe_align_block_size", torch::kCUDA, &moe_align_block_size); - // Compute int8 quantized tensor for given scaling factor. ops.def( "static_scaled_int8_quant(Tensor! out, Tensor input, Tensor scale," diff --git a/docs/requirements-docs.txt b/docs/requirements-docs.txt index 6687929c0bebe..e3e35844405ac 100644 --- a/docs/requirements-docs.txt +++ b/docs/requirements-docs.txt @@ -4,6 +4,7 @@ sphinx-copybutton==0.5.2 myst-parser==2.0.0 sphinx-argparse==0.4.0 msgspec +cloudpickle # packages to install to build the documentation pydantic >= 2.8 @@ -12,4 +13,7 @@ torch py-cpuinfo transformers mistral_common >= 1.3.4 -openai # Required by docs/source/serving/openai_compatible_server.md's vllm.entrypoints.openai.cli_args \ No newline at end of file +aiohttp +starlette +openai # Required by docs/source/serving/openai_compatible_server.md's vllm.entrypoints.openai.cli_args +partial-json-parser # Required by docs/source/serving/openai_compatible_server.md's vllm.entrypoints.openai.cli_args \ No newline at end of file diff --git a/docs/source/conf.py b/docs/source/conf.py index 8435129e752e1..c7b638473a931 100644 --- a/docs/source/conf.py +++ b/docs/source/conf.py @@ -96,7 +96,6 @@ def setup(app): # Mock out external dependencies here, otherwise the autodoc pages may be blank. autodoc_mock_imports = [ - "aiohttp", "compressed_tensors", "cpuinfo", "cv2", @@ -143,6 +142,7 @@ def add_line(self, line: str, source: str, *lineno: int) -> None: "python": ("https://docs.python.org/3", None), "typing_extensions": ("https://typing-extensions.readthedocs.io/en/latest", None), + "aiohttp": ("https://docs.aiohttp.org/en/stable", None), "pillow": ("https://pillow.readthedocs.io/en/stable", None), "numpy": ("https://numpy.org/doc/stable", None), "torch": ("https://pytorch.org/docs/stable", None), diff --git a/docs/source/dev/input_processing/model_inputs_index.rst b/docs/source/dev/input_processing/model_inputs_index.rst index 5d895837590ba..f0ec1fea15ddb 100644 --- a/docs/source/dev/input_processing/model_inputs_index.rst +++ b/docs/source/dev/input_processing/model_inputs_index.rst @@ -25,7 +25,7 @@ Module Contents LLM Engine Inputs ----------------- -.. autoclass:: vllm.inputs.LLMInputs +.. autoclass:: vllm.inputs.DecoderOnlyInputs :members: :show-inheritance: diff --git a/docs/source/dev/pooling_params.rst b/docs/source/dev/pooling_params.rst new file mode 100644 index 0000000000000..334e0287aff09 --- /dev/null +++ b/docs/source/dev/pooling_params.rst @@ -0,0 +1,5 @@ +Pooling Parameters +================== + +.. autoclass:: vllm.PoolingParams + :members: diff --git a/docs/source/getting_started/cpu-installation.rst b/docs/source/getting_started/cpu-installation.rst index c8947beb34942..d12aeebbbc184 100644 --- a/docs/source/getting_started/cpu-installation.rst +++ b/docs/source/getting_started/cpu-installation.rst @@ -3,7 +3,13 @@ Installation with CPU ======================== -vLLM initially supports basic model inferencing and serving on x86 CPU platform, with data types FP32 and BF16. +vLLM initially supports basic model inferencing and serving on x86 CPU platform, with data types FP32 and BF16. vLLM CPU backend supports the following vLLM features: + +- Tensor Parallel (``-tp = N``) +- Quantization (``INT8 W8A8, AWQ``) + +.. note:: + FP16 data type and more advanced features on `chunked-prefill`, `prefix-caching` and `FP8 KV cache` are under development and will be available soon. Table of contents: @@ -59,20 +65,6 @@ Build from source $ pip install cmake>=3.26 wheel packaging ninja "setuptools-scm>=8" numpy $ pip install -v -r requirements-cpu.txt --extra-index-url https://download.pytorch.org/whl/cpu -- Third, build and install oneDNN library from source: - -.. code-block:: console - - $ git clone -b rls-v3.5 https://github.com/oneapi-src/oneDNN.git - $ cmake -B ./oneDNN/build -S ./oneDNN -G Ninja -DONEDNN_LIBRARY_TYPE=STATIC \ - -DONEDNN_BUILD_DOC=OFF \ - -DONEDNN_BUILD_EXAMPLES=OFF \ - -DONEDNN_BUILD_TESTS=OFF \ - -DONEDNN_BUILD_GRAPH=OFF \ - -DONEDNN_ENABLE_WORKLOAD=INFERENCE \ - -DONEDNN_ENABLE_PRIMITIVE=MATMUL - $ cmake --build ./oneDNN/build --target install --config Release - - Finally, build and install vLLM CPU backend: .. code-block:: console @@ -155,5 +147,20 @@ Performance tips - If using vLLM CPU backend on a multi-socket machine with NUMA, be aware to set CPU cores using ``VLLM_CPU_OMP_THREADS_BIND`` to avoid cross NUMA node memory access. +CPU Backend Considerations +-------------------------- + +- The CPU backend significantly differs from the GPU backend since the vLLM architecture was originally optimized for GPU use. A number of optimizations are needed to enhance its performance. + +- Decouple the HTTP serving components from the inference components. In a GPU backend configuration, the HTTP serving and tokenization tasks operate on the CPU, while inference runs on the GPU, which typically does not pose a problem. However, in a CPU-based setup, the HTTP serving and tokenization can cause significant context switching and reduced cache efficiency. Therefore, it is strongly recommended to segregate these two components for improved performance. + +- On CPU based setup with NUMA enabled, the memory access performance may be largely impacted by the `topology `_. For NUMA architecture, two optimizations are to recommended: Tensor Parallel or Data Parallel. + + * Using Tensor Parallel for a latency constraints deployment: following GPU backend design, a Megatron-LM's parallel algorithm will be used to shard the model, based on the number of NUMA nodes (e.g. TP = 2 for a two NUMA node system). With `TP feature on CPU `_ merged, Tensor Parallel is supported for serving and offline inferencing. In general each NUMA node is treated as one GPU card. Below is the example script to enable Tensor Parallel = 2 for serving: + + .. code-block:: console + + $ VLLM_CPU_KVCACHE_SPACE=40 VLLM_CPU_OMP_THREADS_BIND="0-31|32-63" vllm serve meta-llama/Llama-2-7b-chat-hf -tp=2 --distributed-executor-backend mp + * Using Data Parallel for maximum throughput: to launch an LLM serving endpoint on each NUMA node along with one additional load balancer to dispatch the requests to those endpoints. Common solutions like `Nginx <../serving/deploying_with_nginx.html>`_ or HAProxy are recommended. Anyscale Ray project provides the feature on LLM `serving `_. Here is the example to setup a scalable LLM serving with `Ray Serve `_. \ No newline at end of file diff --git a/docs/source/getting_started/debugging.rst b/docs/source/getting_started/debugging.rst index 81287762d3c0a..91978065faf42 100644 --- a/docs/source/getting_started/debugging.rst +++ b/docs/source/getting_started/debugging.rst @@ -1,32 +1,53 @@ .. _debugging: +=============== Debugging Tips =============== -Debugging hang/crash issues ---------------------------- +This document outlines some debugging strategies you can consider. If you think you've discovered a bug, please `search existing issues `_ first to see if it has already been reported. If not, please `file a new issue `_, providing as much relevant information as possible. + +.. note:: + + Once you've debugged a problem, remember to turn off any debugging environment variables defined, or simply start a new shell to avoid being affected by lingering debugging settings. Otherwise, the system might be slow with debugging functionalities left activated. -When an vLLM instance hangs or crashes, it is very difficult to debug the issue. But wait a minute, it is also possible that vLLM is doing something that indeed takes a long time: +Hangs downloading a model +---------------------------------------- +If the model isn't already downloaded to disk, vLLM will download it from the internet which can take time and depend on your internet connection. +It's recommended to download the model first using the `huggingface-cli `_ and passing the local path to the model to vLLM. This way, you can isolate the issue. -- **Downloading a model**: Do you have the model already downloaded in your disk? If not, vLLM will download the model from the internet, which can take a long time. Be sure to check the internet connection. It would be better to download the model first using `huggingface-cli `_ and then use the local path to the model. This way, you can isolate the issue. -- **Loading the model from disk**: If the model is large, it can take a long time to load the model from disk. Please take care of the location you store the model. Some clusters have shared filesystems across nodes, e.g. distributed filesystem or network filesystem, which can be slow. It would be better to store the model in a local disk. In addition, please also watch the CPU memory usage. When the model is too large, it might take much CPU memory, which can slow down the operating system because it needs to frequently swap memory between the disk and the memory. -- **Tensor parallel inference**: If the model is too large to fit in a single GPU, you might want to use tensor parallelism to split the model across multiple GPUs. In that case, every process will read the whole model and split it into chunks, which makes the disk reading time even longer (proportional to the size of tensor parallelism). You can convert the model checkpoint to a sharded checkpoint using `the provided script `_ . The conversion process might take some time, but later you can load the sharded checkpoint much faster. The model loading time should remain constant regardless of the size of tensor parallelism. +Hangs loading a model from disk +---------------------------------------- +If the model is large, it can take a long time to load it from disk. Pay attention to where you store the model. Some clusters have shared filesystems across nodes, e.g. a distributed filesystem or a network filesystem, which can be slow. +It'd be better to store the model in a local disk. Additionally, have a look at the CPU memory usage, when the model is too large it might take a lot of CPU memory, slowing down the operating system because it needs to frequently swap between disk and memory. -If you have already taken care of the above issues, but the vLLM instance still hangs, with CPU and GPU utilization at near zero, it is likely that the vLLM instance is stuck somewhere. Here are some tips to help debug the issue: +Model is too large +---------------------------------------- +If the model is too large to fit in a single GPU, you might want to `consider tensor parallelism `_ to split the model across multiple GPUs. In that case, every process will read the whole model and split it into chunks, which makes the disk reading time even longer (proportional to the size of tensor parallelism). You can convert the model checkpoint to a sharded checkpoint using `this example `_ . The conversion process might take some time, but later you can load the sharded checkpoint much faster. The model loading time should remain constant regardless of the size of tensor parallelism. -- Set the environment variable ``export VLLM_LOGGING_LEVEL=DEBUG`` to turn on more logging. -- Set the environment variable ``export CUDA_LAUNCH_BLOCKING=1`` to know exactly which CUDA kernel is causing the trouble. -- Set the environment variable ``export NCCL_DEBUG=TRACE`` to turn on more logging for NCCL. -- Set the environment variable ``export VLLM_TRACE_FUNCTION=1``. All the function calls in vLLM will be recorded. Inspect these log files, and tell which function crashes or hangs. +Enable more logging +---------------------------------------- +If other strategies don't solve the problem, it's likely that the vLLM instance is stuck somewhere. You can use the following environment variables to help debug the issue: -With more logging, hopefully you can find the root cause of the issue. +- ``export VLLM_LOGGING_LEVEL=DEBUG`` to turn on more logging. +- ``export CUDA_LAUNCH_BLOCKING=1`` to identify which CUDA kernel is causing the problem. +- ``export NCCL_DEBUG=TRACE`` to turn on more logging for NCCL. +- ``export VLLM_TRACE_FUNCTION=1`` to record all function calls for inspection in the log files to tell which function crashes or hangs. -If it crashes, and the error trace shows somewhere around ``self.graph.replay()`` in ``vllm/worker/model_runner.py``, it is a cuda error inside cudagraph. To know the particular cuda operation that causes the error, you can add ``--enforce-eager`` to the command line, or ``enforce_eager=True`` to the :class:`~vllm.LLM` class, to disable the cudagraph optimization. This way, you can locate the exact cuda operation that causes the error. +Incorrect network setup +---------------------------------------- +The vLLM instance cannot get the correct IP address if you have a complicated network config. You can find a log such as ``DEBUG 06-10 21:32:17 parallel_state.py:88] world_size=8 rank=0 local_rank=0 distributed_init_method=tcp://xxx.xxx.xxx.xxx:54641 backend=nccl`` and the IP address should be the correct one. +If it's not, override the IP address using the environment variable ``export VLLM_HOST_IP=``. -Here are some common issues that can cause hangs: +You might also need to set ``export NCCL_SOCKET_IFNAME=`` and ``export GLOO_SOCKET_IFNAME=`` to specify the network interface for the IP address. -- **Incorrect network setup**: The vLLM instance cannot get the correct IP address if you have complicated network config. You can find the log such as ``DEBUG 06-10 21:32:17 parallel_state.py:88] world_size=8 rank=0 local_rank=0 distributed_init_method=tcp://xxx.xxx.xxx.xxx:54641 backend=nccl``. The IP address should be the correct one. If not, override the IP address by setting the environment variable ``export VLLM_HOST_IP=your_ip_address``. You might also need to set ``export NCCL_SOCKET_IFNAME=your_network_interface`` and ``export GLOO_SOCKET_IFNAME=your_network_interface`` to specify the network interface for the IP address. -- **Incorrect hardware/driver**: GPU/CPU communication cannot be established. You can run the following sanity check script to see if the GPU/CPU communication is working correctly. +Error near ``self.graph.replay()`` +---------------------------------------- +If vLLM crashes and the error trace captures it somewhere around ``self.graph.replay()`` in ``vllm/worker/model_runner.py``, it is a CUDA error inside CUDAGraph. +To identify the particular CUDA operation that causes the error, you can add ``--enforce-eager`` to the command line, or ``enforce_eager=True`` to the :class:`~vllm.LLM` class to disable the CUDAGraph optimization and isolate the exact CUDA operation that causes the error. + +Incorrect hardware/driver +---------------------------------------- +If GPU/CPU communication cannot be established, you can use the following Python script and follow the instructions below to confirm whether the GPU/CPU communication is working correctly. .. code-block:: python @@ -84,33 +105,29 @@ Here are some common issues that can cause hangs: dist.destroy_process_group(gloo_group) dist.destroy_process_group() -.. tip:: +If you are testing with a single node, adjust ``--nproc-per-node`` to the number of GPUs you want to use: - Save the script as ``test.py``. - - If you are testing in a single-node, run it with ``NCCL_DEBUG=TRACE torchrun --nproc-per-node=8 test.py``, adjust ``--nproc-per-node`` to the number of GPUs you want to use. - - If you are testing with multi-nodes, run it with ``NCCL_DEBUG=TRACE torchrun --nnodes 2 --nproc-per-node=2 --rdzv_backend=c10d --rdzv_endpoint=$MASTER_ADDR test.py``. Adjust ``--nproc-per-node`` and ``--nnodes`` according to your setup. Make sure ``MASTER_ADDR``: - - - is the correct IP address of the master node - - is reachable from all nodes - - is set before running the script. +.. code-block:: console - If the script runs successfully, you should see the message ``sanity check is successful!``. + $ NCCL_DEBUG=TRACE torchrun --nproc-per-node= test.py - Note that multi-node environment is more complicated than single-node. If you see errors such as ``torch.distributed.DistNetworkError``, it is likely that the network/DNS setup is incorrect. In that case, you can manually assign node rank and specify the IP via command line arguments: +If you are testing with multi-nodes, adjust ``--nproc-per-node`` and ``--nnodes`` according to your setup and set ``MASTER_ADDR`` to the correct IP address of the master node, reachable from all nodes. Then, run: - - In the first node, run ``NCCL_DEBUG=TRACE torchrun --nnodes 2 --nproc-per-node=2 --node-rank 0 --master_addr $MASTER_ADDR test.py``. - - In the second node, run ``NCCL_DEBUG=TRACE torchrun --nnodes 2 --nproc-per-node=2 --node-rank 1 --master_addr $MASTER_ADDR test.py``. +.. code-block:: console + + $ NCCL_DEBUG=TRACE torchrun --nnodes 2 --nproc-per-node=2 --rdzv_backend=c10d --rdzv_endpoint=$MASTER_ADDR test.py - Adjust ``--nproc-per-node``, ``--nnodes``, and ``--node-rank`` according to your setup. The difference is that you need to execute different commands (with different ``--node-rank``) on different nodes. +If the script runs successfully, you should see the message ``sanity check is successful!``. -If the problem persists, feel free to `open an issue on GitHub `_, with a detailed description of the issue, your environment, and the logs. +.. note:: -Some known issues: + A multi-node environment is more complicated than a single-node one. If you see errors such as ``torch.distributed.DistNetworkError``, it is likely that the network/DNS setup is incorrect. In that case, you can manually assign node rank and specify the IP via command line arguments: -- In ``v0.5.2``, ``v0.5.3``, and ``v0.5.3.post1``, there is a bug caused by `zmq `_ , which can cause hangs at a low probability (once in about 20 times, depending on the machine configuration). The solution is to upgrade to the latest version of ``vllm`` to include the `fix `_ . + - In the first node, run ``NCCL_DEBUG=TRACE torchrun --nnodes 2 --nproc-per-node=2 --node-rank 0 --master_addr $MASTER_ADDR test.py``. + - In the second node, run ``NCCL_DEBUG=TRACE torchrun --nnodes 2 --nproc-per-node=2 --node-rank 1 --master_addr $MASTER_ADDR test.py``. -.. warning:: + Adjust ``--nproc-per-node``, ``--nnodes``, and ``--node-rank`` according to your setup, being sure to execute different commands (with different ``--node-rank``) on different nodes. - After you find the root cause and solve the issue, remember to turn off all the debugging environment variables defined above, or simply start a new shell to avoid being affected by the debugging settings. If you don't do this, the system might be slow because many debugging functionalities are turned on. +Known Issues +---------------------------------------- +- In ``v0.5.2``, ``v0.5.3``, and ``v0.5.3.post1``, there is a bug caused by `zmq `_ , which can occasionally cause vLLM to hang depending on the machine configuration. The solution is to upgrade to the latest version of ``vllm`` to include the `fix `_. diff --git a/docs/source/getting_started/installation.rst b/docs/source/getting_started/installation.rst index c6db74c18629f..a706b285edede 100644 --- a/docs/source/getting_started/installation.rst +++ b/docs/source/getting_started/installation.rst @@ -1,19 +1,20 @@ .. _installation: +============ Installation ============ vLLM is a Python library that also contains pre-compiled C++ and CUDA (12.1) binaries. Requirements ------------- +============ * OS: Linux -* Python: 3.8 -- 3.12 +* Python: 3.8 - 3.12 * GPU: compute capability 7.0 or higher (e.g., V100, T4, RTX20xx, A100, L4, H100, etc.) Install released versions --------------------------- +========================= You can install vLLM using pip: @@ -46,10 +47,13 @@ You can install vLLM using pip: Therefore, it is recommended to install vLLM with a **fresh new** conda environment. If either you have a different CUDA version or you want to use an existing PyTorch installation, you need to build vLLM from source. See below for instructions. + +.. _install-the-latest-code: + Install the latest code ----------------------------- +======================= -LLM inference is a fast-evolving field, and the latest code may contain bug fixes, performance improvements, and new features that are not released yet. To allow users to try the latest code without waiting for the next release, vLLM provides wheels for Linux running on x86 platform with cuda 12 for every commit since v0.5.3. You can download and install the latest one with the following command: +LLM inference is a fast-evolving field, and the latest code may contain bug fixes, performance improvements, and new features that are not released yet. To allow users to try the latest code without waiting for the next release, vLLM provides wheels for Linux running on a x86 platform with CUDA 12 for every commit since ``v0.5.3``. You can download and install it with the following command: .. code-block:: console @@ -62,7 +66,7 @@ If you want to access the wheels for previous commits, you can specify the commi $ export VLLM_COMMIT=33f460b17a54acb3b6cc0b03f4a17876cff5eafd # use full commit hash from the main branch $ pip install https://vllm-wheels.s3.us-west-2.amazonaws.com/${VLLM_COMMIT}/vllm-1.0.0.dev-cp38-abi3-manylinux1_x86_64.whl -Note that the wheels are built with Python 3.8 abi (see `PEP 425 `_ for more details about abi), so **they are compatible with Python 3.8 and later**. The version string in the wheel file name (``1.0.0.dev``) is just a placeholder to have a unified URL for the wheels. The actual versions of wheels are contained in the wheel metadata. +Note that the wheels are built with Python 3.8 ABI (see `PEP 425 `_ for more details about ABI), so **they are compatible with Python 3.8 and later**. The version string in the wheel file name (``1.0.0.dev``) is just a placeholder to have a unified URL for the wheels. The actual versions of wheels are contained in the wheel metadata. Another way to access the latest code is to use the docker images: @@ -73,20 +77,29 @@ Another way to access the latest code is to use the docker images: These docker images are used for CI and testing only, and they are not intended for production use. They will be expired after several days. -Latest code can contain bugs and may not be stable. Please use it with caution. +The latest code can contain bugs and may not be stable. Please use it with caution. + +.. _build_from_source: -Build from source (without compilation) +Build from source +================= + +.. _python-only-build: + +Python-only build (without compilation) --------------------------------------- -If you want to develop vLLM, and you only need to change the Python code, you can build vLLM without compilation. +If you only need to change Python code, you can simply build vLLM without compilation. -The first step is to follow the previous instructions to install the latest vLLM wheel: +The first step is to install the latest vLLM wheel: .. code-block:: console - $ pip install https://vllm-wheels.s3.us-west-2.amazonaws.com/nightly/vllm-1.0.0.dev-cp38-abi3-manylinux1_x86_64.whl + pip install https://vllm-wheels.s3.us-west-2.amazonaws.com/nightly/vllm-1.0.0.dev-cp38-abi3-manylinux1_x86_64.whl -After verifying that the installation is successful, we have a script for you to copy and link directories, so that you can edit the Python code directly: +You can find more information about vLLM's wheels `above <#install-the-latest-code>`_. + +After verifying that the installation is successful, you can use `the following script `_: .. code-block:: console @@ -94,94 +107,113 @@ After verifying that the installation is successful, we have a script for you to $ cd vllm $ python python_only_dev.py -It will: +The script will: -- Find the installed vLLM in the current environment. -- Copy built files to the current directory. -- Rename the installed vLLM -- Symbolically link the current directory to the installed vLLM. +* Find the installed vLLM package in the current environment. +* Copy built files to the current directory. +* Rename the installed vLLM package. +* Symbolically link the current directory to the installed vLLM package. -This way, you can edit the Python code in the current directory, and the changes will be reflected in the installed vLLM. +Now, you can edit the Python code in the current directory, and the changes will be reflected when you run vLLM. -.. _build_from_source: +Once you have finished editing or want to install another vLLM wheel, you should exit the development environment using `the same script `_ with the ``--quit-dev`` (or ``-q`` for short) flag: -Build from source (with compilation) ------------------------------------- +.. code-block:: console + + $ python python_only_dev.py --quit-dev + +The ``--quit-dev`` flag will: + +* Remove the symbolic link from the current directory to the vLLM package. +* Restore the original vLLM package from the backup. + +If you update the vLLM wheel and rebuild from the source to make further edits, you will need to repeat the `Python-only build <#python-only-build>`_ steps again. -If you need to touch the C++ or CUDA code, you need to build vLLM from source: +.. note:: + + There is a possibility that your source code may have a different commit ID compared to the latest vLLM wheel, which could potentially lead to unknown errors. + It is recommended to use the same commit ID for the source code as the vLLM wheel you have installed. Please refer to `the section above <#install-the-latest-code>`_ for instructions on how to install a specified wheel. + +Full build (with compilation) +----------------------------- + +If you want to modify C++ or CUDA code, you'll need to build vLLM from source. This can take several minutes: .. code-block:: console $ git clone https://github.com/vllm-project/vllm.git $ cd vllm - $ pip install -e . # This can take a long time + $ pip install -e . -.. note:: +.. tip:: - This will uninstall existing PyTorch, and install the version required by vLLM. If you want to use an existing PyTorch installation, there need to be some changes: + Building from source requires a lot of compilation. If you are building from source repeatedly, it's more efficient to cache the compilation results. + For example, you can install `ccache `_ using ``conda install ccache`` or ``apt install ccache`` . + As long as ``which ccache`` command can find the ``ccache`` binary, it will be used automatically by the build system. After the first build, subsequent builds will be much faster. - .. code-block:: console - $ git clone https://github.com/vllm-project/vllm.git - $ cd vllm - $ python use_existing_torch.py - $ pip install -r requirements-build.txt - $ pip install -e . --no-build-isolation +Use an existing PyTorch installation +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +There are scenarios where the PyTorch dependency cannot be easily installed via pip, e.g.: - The differences are: +* Building vLLM with PyTorch nightly or a custom PyTorch build. +* Building vLLM with aarch64 and CUDA (GH200), where the PyTorch wheels are not available on PyPI. Currently, only the PyTorch nightly has wheels for aarch64 with CUDA. You can run ``pip3 install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu124`` to `install PyTorch nightly `_, and then build vLLM on top of it. - - ``python use_existing_torch.py``: This script will remove all the PyTorch versions in the requirements files, so that the existing PyTorch installation will be used. - - ``pip install -r requirements-build.txt``: You need to manually install the requirements for building vLLM. - - ``pip install -e . --no-build-isolation``: You need to disable build isolation, so that the build system can use the existing PyTorch installation. +To build vLLM using an existing PyTorch installation: - This is especially useful when the PyTorch dependency cannot be easily installed via pip, e.g.: +.. code-block:: console - - build vLLM with PyTorch nightly or a custom PyTorch build. - - build vLLM with aarch64 and cuda (GH200), where the PyTorch wheels are not available on PyPI. Currently, only PyTorch nightly has wheels for aarch64 with CUDA. You can run ``pip3 install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu124`` to install PyTorch nightly, and then build vLLM on top of it. + $ git clone https://github.com/vllm-project/vllm.git + $ cd vllm + $ python use_existing_torch.py + $ pip install -r requirements-build.txt + $ pip install -e . --no-build-isolation -.. note:: - vLLM can fully run only on Linux, but you can still build it on other systems (for example, macOS). This build is only for development purposes, allowing for imports and a more convenient dev environment. The binaries will not be compiled and not work on non-Linux systems. You can create such a build with the following commands: +Troubleshooting +~~~~~~~~~~~~~~~ - .. code-block:: console +To avoid your system being overloaded, you can limit the number of compilation jobs +to be run simultaneously, via the environment variable ``MAX_JOBS``. For example: - $ export VLLM_TARGET_DEVICE=empty - $ pip install -e . +.. code-block:: console + $ export MAX_JOBS=6 + $ pip install -e . -.. tip:: +This is especially useful when you are building on less powerful machines. For example, when you use WSL it only `assigns 50% of the total memory by default `_, so using ``export MAX_JOBS=1`` can avoid compiling multiple files simultaneously and running out of memory. +A side effect is a much slower build process. - Building from source requires quite a lot compilation. If you are building from source for multiple times, it is beneficial to cache the compilation results. For example, you can install `ccache `_ via either ``conda install ccache`` or ``apt install ccache`` . As long as ``which ccache`` command can find the ``ccache`` binary, it will be used automatically by the build system. After the first build, the subsequent builds will be much faster. +Additionally, if you have trouble building vLLM, we recommend using the NVIDIA PyTorch Docker image. -.. tip:: - To avoid your system being overloaded, you can limit the number of compilation jobs - to be run simultaneously, via the environment variable ``MAX_JOBS``. For example: +.. code-block:: console - .. code-block:: console + $ # Use `--ipc=host` to make sure the shared memory is large enough. + $ docker run --gpus all -it --rm --ipc=host nvcr.io/nvidia/pytorch:23.10-py3 - $ export MAX_JOBS=6 - $ pip install -e . +If you don't want to use docker, it is recommended to have a full installation of CUDA Toolkit. You can download and install it from `the official website `_. After installation, set the environment variable ``CUDA_HOME`` to the installation path of CUDA Toolkit, and make sure that the ``nvcc`` compiler is in your ``PATH``, e.g.: - This is especially useful when you are building on less powerful machines. For example, when you use WSL, it only `gives you half of the memory by default `_, and you'd better use ``export MAX_JOBS=1`` to avoid compiling multiple files simultaneously and running out of memory. The side effect is that the build process will be much slower. If you only touch the Python code, slow compilation is okay, as you are building in an editable mode: you can just change the code and run the Python script without any re-compilation or re-installation. +.. code-block:: console -.. tip:: - If you have trouble building vLLM, we recommend using the NVIDIA PyTorch Docker image. + $ export CUDA_HOME=/usr/local/cuda + $ export PATH="${CUDA_HOME}/bin:$PATH" - .. code-block:: console +Here is a sanity check to verify that the CUDA Toolkit is correctly installed: - $ # Use `--ipc=host` to make sure the shared memory is large enough. - $ docker run --gpus all -it --rm --ipc=host nvcr.io/nvidia/pytorch:23.10-py3 +.. code-block:: console - If you don't want to use docker, it is recommended to have a full installation of CUDA Toolkit. You can download and install it from `the official website `_. After installation, set the environment variable ``CUDA_HOME`` to the installation path of CUDA Toolkit, and make sure that the ``nvcc`` compiler is in your ``PATH``, e.g.: + $ nvcc --version # verify that nvcc is in your PATH + $ ${CUDA_HOME}/bin/nvcc --version # verify that nvcc is in your CUDA_HOME - .. code-block:: console - $ export CUDA_HOME=/usr/local/cuda - $ export PATH="${CUDA_HOME}/bin:$PATH" +Unsupported OS build +-------------------- - Here is a sanity check to verify that the CUDA Toolkit is correctly installed: +vLLM can fully run only on Linux but for development purposes, you can still build it on other systems (for example, macOS), allowing for imports and a more convenient development environment. The binaries will not be compiled and won't work on non-Linux systems. - .. code-block:: console +Simply disable the ``VLLM_TARGET_DEVICE`` environment variable before installing: + +.. code-block:: console - $ nvcc --version # verify that nvcc is in your PATH - $ ${CUDA_HOME}/bin/nvcc --version # verify that nvcc is in your CUDA_HOME + $ export VLLM_TARGET_DEVICE=empty + $ pip install -e . diff --git a/docs/source/getting_started/neuron-installation.rst b/docs/source/getting_started/neuron-installation.rst index a9ed4d7fa2cd7..ec99fc013057b 100644 --- a/docs/source/getting_started/neuron-installation.rst +++ b/docs/source/getting_started/neuron-installation.rst @@ -27,6 +27,10 @@ Installation steps: .. _build_from_source_neuron: +.. note:: + + The currently supported version of Pytorch for Neuron installs `triton` version `2.1.0`. This is incompatible with vLLM >= 0.5.3. You may see an error `cannot import name 'default_dump_dir...`. To work around this, run a `pip install --upgrade triton==3.0.0` after installing the vLLM wheel. + Build from source ----------------- diff --git a/docs/source/getting_started/openvino-installation.rst b/docs/source/getting_started/openvino-installation.rst index b67e0410f7441..5eeb7c78f7e51 100644 --- a/docs/source/getting_started/openvino-installation.rst +++ b/docs/source/getting_started/openvino-installation.rst @@ -3,7 +3,7 @@ Installation with OpenVINO ========================== -vLLM powered by OpenVINO supports all LLM models from :doc:`vLLM supported models list <../models/supported_models>` and can perform optimal model serving on all x86-64 CPUs with, at least, AVX2 support. OpenVINO vLLM backend supports the following advanced vLLM features: +vLLM powered by OpenVINO supports all LLM models from :doc:`vLLM supported models list <../models/supported_models>` and can perform optimal model serving on all x86-64 CPUs with, at least, AVX2 support, as well as on both integrated and discrete Intel® GPUs (`the list of supported GPUs `_). OpenVINO vLLM backend supports the following advanced vLLM features: - Prefix caching (``--enable-prefix-caching``) - Chunked prefill (``--enable-chunked-prefill``) @@ -53,34 +53,57 @@ Install from source $ pip install --upgrade pip $ pip install -r requirements-build.txt --extra-index-url https://download.pytorch.org/whl/cpu -- Finally, install vLLM with OpenVINO backend: +- Finally, install vLLM with OpenVINO backend: .. code-block:: console $ PIP_EXTRA_INDEX_URL="https://download.pytorch.org/whl/cpu" VLLM_TARGET_DEVICE=openvino python -m pip install -v . +- [Optional] To use vLLM OpenVINO backend with a GPU device, ensure your system is properly set up. Follow the instructions provided here: `https://docs.openvino.ai/2024/get-started/configurations/configurations-intel-gpu.html `_. + .. _openvino_backend_performance_tips: Performance tips ---------------- -vLLM OpenVINO backend uses the following environment variables to control behavior: +vLLM OpenVINO backend environment variables +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +- ``VLLM_OPENVINO_DEVICE`` to specify which device utilize for the inference. If there are multiple GPUs in the system, additional indexes can be used to choose the proper one (e.g, ``VLLM_OPENVINO_DEVICE=GPU.1``). If the value is not specified, CPU device is used by default. + +- ``VLLM_OPENVINO_ENABLE_QUANTIZED_WEIGHTS=ON`` to enable U8 weights compression during model loading stage. By default, compression is turned off. You can also export model with different compression techniques using `optimum-cli` and pass exported folder as `` + +CPU performance tips +~~~~~~~~~~~~~~~~~~~~ + +CPU uses the following environment variables to control behavior: - ``VLLM_OPENVINO_KVCACHE_SPACE`` to specify the KV Cache size (e.g, ``VLLM_OPENVINO_KVCACHE_SPACE=40`` means 40 GB space for KV cache), larger setting will allow vLLM running more requests in parallel. This parameter should be set based on the hardware configuration and memory management pattern of users. - ``VLLM_OPENVINO_CPU_KV_CACHE_PRECISION=u8`` to control KV cache precision. By default, FP16 / BF16 is used depending on platform. -- ``VLLM_OPENVINO_ENABLE_QUANTIZED_WEIGHTS=ON`` to enable U8 weights compression during model loading stage. By default, compression is turned off. You can also export model with different compression techniques using `optimum-cli` and pass exported folder as `` - To enable better TPOT / TTFT latency, you can use vLLM's chunked prefill feature (``--enable-chunked-prefill``). Based on the experiments, the recommended batch size is ``256`` (``--max-num-batched-tokens``) -OpenVINO best known configuration is: +OpenVINO best known configuration for CPU is: .. code-block:: console $ VLLM_OPENVINO_KVCACHE_SPACE=100 VLLM_OPENVINO_CPU_KV_CACHE_PRECISION=u8 VLLM_OPENVINO_ENABLE_QUANTIZED_WEIGHTS=ON \ python3 vllm/benchmarks/benchmark_throughput.py --model meta-llama/Llama-2-7b-chat-hf --dataset vllm/benchmarks/ShareGPT_V3_unfiltered_cleaned_split.json --enable-chunked-prefill --max-num-batched-tokens 256 +GPU performance tips +~~~~~~~~~~~~~~~~~~~~ +GPU device implements the logic for automatic detection of available GPU memory and, by default, tries to reserve as much memory as possible for the KV cache (taking into account ``gpu_memory_utilization`` option). However, this behavior can be overridden by explicitly specifying the desired amount of memory for the KV cache using ``VLLM_OPENVINO_KVCACHE_SPACE`` environment variable (e.g, ``VLLM_OPENVINO_KVCACHE_SPACE=8`` means 8 GB space for KV cache). + +Currently, the best performance using GPU can be achieved with the default vLLM execution parameters for models with quantized weights (8 and 4-bit integer data types are supported) and `preemption-mode=swap`. + +OpenVINO best known configuration for GPU is: + +.. code-block:: console + + $ VLLM_OPENVINO_DEVICE=GPU VLLM_OPENVINO_ENABLE_QUANTIZED_WEIGHTS=ON \ + python3 vllm/benchmarks/benchmark_throughput.py --model meta-llama/Llama-2-7b-chat-hf --dataset vllm/benchmarks/ShareGPT_V3_unfiltered_cleaned_split.json + .. _openvino_backend_limitations: Limitations diff --git a/docs/source/getting_started/quickstart.rst b/docs/source/getting_started/quickstart.rst index 80b19ac672936..00b762ccc2ccb 100644 --- a/docs/source/getting_started/quickstart.rst +++ b/docs/source/getting_started/quickstart.rst @@ -1,38 +1,50 @@ .. _quickstart: +========== Quickstart ========== -This guide shows how to use vLLM to: +This guide will help you quickly get started with vLLM to: -* run offline batched inference on a dataset; -* build an API server for a large language model; -* start an OpenAI-compatible API server. +* :ref:`Run offline batched inference ` +* :ref:`Run OpenAI-compatible inference ` -Be sure to complete the :ref:`installation instructions ` before continuing with this guide. +Prerequisites +-------------- +- OS: Linux +- Python: 3.8 - 3.12 +- GPU: compute capability 7.0 or higher (e.g., V100, T4, RTX20xx, A100, L4, H100, etc.) -.. note:: +Installation +-------------- + +You can install vLLM using pip. It's recommended to use `conda `_ to create and manage Python environments. + +.. code-block:: console - By default, vLLM downloads model from `HuggingFace `_. If you would like to use models from `ModelScope `_ in the following examples, please set the environment variable: + $ conda create -n myenv python=3.10 -y + $ conda activate myenv + $ pip install vllm - .. code-block:: shell +Please refer to the :ref:`installation documentation ` for more details on installing vLLM. - export VLLM_USE_MODELSCOPE=True +.. _offline_batched_inference: Offline Batched Inference ------------------------- -We first show an example of using vLLM for offline batched inference on a dataset. In other words, we use vLLM to generate texts for a list of input prompts. +With vLLM installed, you can start generating texts for list of input prompts (i.e. offline batch inferencing). The example script for this section can be found `here `__. + +The first line of this example imports the classes :class:`~vllm.LLM` and :class:`~vllm.SamplingParams`: -Import :class:`~vllm.LLM` and :class:`~vllm.SamplingParams` from vLLM. -The :class:`~vllm.LLM` class is the main class for running offline inference with vLLM engine. -The :class:`~vllm.SamplingParams` class specifies the parameters for the sampling process. +- :class:`~vllm.LLM` is the main class for running offline inference with vLLM engine. +- :class:`~vllm.SamplingParams` specifies the parameters for the sampling process. .. code-block:: python from vllm import LLM, SamplingParams -Define the list of input prompts and the sampling parameters for generation. The sampling temperature is set to 0.8 and the nucleus sampling probability is set to 0.95. For more information about the sampling parameters, refer to the `class definition `_. +The next section defines a list of input prompts and sampling parameters for text generation. The `sampling temperature `_ is set to ``0.8`` and the `nucleus sampling probability `_ is set to ``0.95``. You can find more information about the sampling parameters `here `__. .. code-block:: python @@ -44,46 +56,46 @@ Define the list of input prompts and the sampling parameters for generation. The ] sampling_params = SamplingParams(temperature=0.8, top_p=0.95) -Initialize vLLM's engine for offline inference with the :class:`~vllm.LLM` class and the `OPT-125M model `_. The list of supported models can be found at :ref:`supported models `. +The :class:`~vllm.LLM` class initializes vLLM's engine and the `OPT-125M model `_ for offline inference. The list of supported models can be found :ref:`here `. .. code-block:: python llm = LLM(model="facebook/opt-125m") -Call ``llm.generate`` to generate the outputs. It adds the input prompts to vLLM engine's waiting queue and executes the vLLM engine to generate the outputs with high throughput. The outputs are returned as a list of ``RequestOutput`` objects, which include all the output tokens. +.. note:: + + By default, vLLM downloads models from `HuggingFace `_. If you would like to use models from `ModelScope `_, set the environment variable ``VLLM_USE_MODELSCOPE`` before initializing the engine. + +Now, the fun part! The outputs are generated using ``llm.generate``. It adds the input prompts to the vLLM engine's waiting queue and executes the vLLM engine to generate the outputs with high throughput. The outputs are returned as a list of ``RequestOutput`` objects, which include all of the output tokens. .. code-block:: python outputs = llm.generate(prompts, sampling_params) - # Print the outputs. for output in outputs: prompt = output.prompt generated_text = output.outputs[0].text print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}") - -The code example can also be found in `examples/offline_inference.py `_. +.. _openai_compatible_server: OpenAI-Compatible Server ------------------------ vLLM can be deployed as a server that implements the OpenAI API protocol. This allows vLLM to be used as a drop-in replacement for applications using OpenAI API. -By default, it starts the server at ``http://localhost:8000``. You can specify the address with ``--host`` and ``--port`` arguments. The server currently hosts one model at a time (OPT-125M in the command below) and implements `list models `_, `create chat completion `_, and `create completion `_ endpoints. We are actively adding support for more endpoints. +By default, it starts the server at ``http://localhost:8000``. You can specify the address with ``--host`` and ``--port`` arguments. The server currently hosts one model at a time and implements endpoints such as `list models `_, `create chat completion `_, and `create completion `_ endpoints. -Start the server: +Run the following command to start the vLLM server with the `Qwen2.5-1.5B-Instruct `_ model: .. code-block:: console - $ vllm serve facebook/opt-125m + $ vllm serve Qwen/Qwen2.5-1.5B-Instruct -By default, the server uses a predefined chat template stored in the tokenizer. You can override this template by using the ``--chat-template`` argument: - -.. code-block:: console +.. note:: - $ vllm serve facebook/opt-125m --chat-template ./examples/template_chatml.jinja + By default, the server uses a predefined chat template stored in the tokenizer. You can learn about overriding it `here `__. -This server can be queried in the same format as OpenAI API. For example, list the models: +This server can be queried in the same format as OpenAI API. For example, to list the models: .. code-block:: console @@ -91,17 +103,17 @@ This server can be queried in the same format as OpenAI API. For example, list t You can pass in the argument ``--api-key`` or environment variable ``VLLM_API_KEY`` to enable the server to check for API key in the header. -Using OpenAI Completions API with vLLM -^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ +OpenAI Completions API with vLLM +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -Query the model with input prompts: +Once your server is started, you can query the model with input prompts: .. code-block:: console $ curl http://localhost:8000/v1/completions \ $ -H "Content-Type: application/json" \ $ -d '{ - $ "model": "facebook/opt-125m", + $ "model": "Qwen/Qwen2.5-1.5B-Instruct", $ "prompt": "San Francisco is a", $ "max_tokens": 7, $ "temperature": 0 @@ -120,36 +132,32 @@ Since this server is compatible with OpenAI API, you can use it as a drop-in rep api_key=openai_api_key, base_url=openai_api_base, ) - completion = client.completions.create(model="facebook/opt-125m", + completion = client.completions.create(model="Qwen/Qwen2.5-1.5B-Instruct", prompt="San Francisco is a") print("Completion result:", completion) -For a more detailed client example, refer to `examples/openai_completion_client.py `_. - -Using OpenAI Chat API with vLLM -^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ +A more detailed client example can be found `here `__. -The vLLM server is designed to support the OpenAI Chat API, allowing you to engage in dynamic conversations with the model. The chat interface is a more interactive way to communicate with the model, allowing back-and-forth exchanges that can be stored in the chat history. This is useful for tasks that require context or more detailed explanations. +OpenAI Chat Completions API with vLLM +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -Querying the model using OpenAI Chat API: +vLLM is designed to also support the OpenAI Chat Completions API. The chat interface is a more dynamic, interactive way to communicate with the model, allowing back-and-forth exchanges that can be stored in the chat history. This is useful for tasks that require context or more detailed explanations. -You can use the `create chat completion `_ endpoint to communicate with the model in a chat-like interface: +You can use the `create chat completion `_ endpoint to interact with the model: .. code-block:: console $ curl http://localhost:8000/v1/chat/completions \ $ -H "Content-Type: application/json" \ $ -d '{ - $ "model": "facebook/opt-125m", + $ "model": "Qwen/Qwen2.5-1.5B-Instruct", $ "messages": [ $ {"role": "system", "content": "You are a helpful assistant."}, $ {"role": "user", "content": "Who won the world series in 2020?"} $ ] $ }' -Python Client Example: - -Using the `openai` python package, you can also communicate with the model in a chat-like manner: +Alternatively, you can use the ``openai`` python package: .. code-block:: python @@ -164,12 +172,10 @@ Using the `openai` python package, you can also communicate with the model in a ) chat_response = client.chat.completions.create( - model="facebook/opt-125m", + model="Qwen/Qwen2.5-1.5B-Instruct", messages=[ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "Tell me a joke."}, ] ) print("Chat response:", chat_response) - -For more in-depth examples and advanced features of the chat API, you can refer to the official OpenAI documentation. diff --git a/docs/source/getting_started/tpu-installation.rst b/docs/source/getting_started/tpu-installation.rst index 217028839e347..f0c812b941c1f 100644 --- a/docs/source/getting_started/tpu-installation.rst +++ b/docs/source/getting_started/tpu-installation.rst @@ -1,35 +1,167 @@ .. _installation_tpu: +##################### Installation with TPU -===================== +##################### -vLLM supports Google Cloud TPUs using PyTorch XLA. +Tensor Processing Units (TPUs) are Google's custom-developed application-specific +integrated circuits (ASICs) used to accelerate machine learning workloads. TPUs +are available in different versions each with different hardware specifications. +For more information about TPUs, see `TPU System Architecture `_. +For more information on the TPU versions supported with vLLM, see: + +* `TPU v6e `_ +* `TPU v5e `_ +* `TPU v5p `_ +* `TPU v4 `_ + +These TPU versions allow you to configure the physical arrangements of the TPU +chips. This can improve throughput and networking performance. For more +information see: + +* `TPU v6e topologies `_ +* `TPU v5e topologies `_ +* `TPU v5p topologies `_ +* `TPU v4 topologies `_ + +In order for you to use Cloud TPUs you need to have TPU quota granted to your +Google Cloud Platform project. TPU quotas specify how many TPUs you can use in a +GPC project and are specified in terms of TPU version, the number of TPU you +want to use, and quota type. For more information, see `TPU quota `_. + +For TPU pricing information, see `Cloud TPU pricing `_. + +You may need additional persistent storage for your TPU VMs. For more +information, see `Storage options for Cloud TPU data `_. Requirements ------------ -* Google Cloud TPU VM (single & multi host) -* TPU versions: v5e, v5p, v4 -* Python: 3.10 +* Google Cloud TPU VM +* TPU versions: v6e, v5e, v5p, v4 +* Python: 3.10 or newer + +Provision Cloud TPUs +==================== + +You can provision Cloud TPUs using the `Cloud TPU API `_` +or the `queued resources `_` +API. This section shows how to create TPUs using the queued resource API. +For more information about using the Cloud TPU API, see `Create a Cloud TPU using the Create Node API `_. +`Queued resources `_ +enable you to request Cloud TPU resources in a queued manner. When you request +queued resources, the request is added to a queue maintained by the Cloud TPU +service. When the requested resource becomes available, it's assigned to your +Google Cloud project for your immediate exclusive use. + +Provision a Cloud TPU with the queued resource API +-------------------------------------------------- +Create a TPU v5e with 4 TPU chips: + +.. code-block:: console + + gcloud alpha compute tpus queued-resources create QUEUED_RESOURCE_ID \ + --node-id TPU_NAME \ + --project PROJECT_ID \ + --zone ZONE \ + --accelerator-type ACCELERATOR_TYPE \ + --runtime-version RUNTIME_VERSION \ + --service-account SERVICE_ACCOUNT + +.. list-table:: Parameter descriptions + :header-rows: 1 + + * - Parameter name + - Description + * - QUEUED_RESOURCE_ID + - The user-assigned ID of the queued resource request. + * - TPU_NAME + - The user-assigned name of the TPU which is created when the queued + resource request is allocated. + * - PROJECT_ID + - Your Google Cloud project + * - ZONE + - The `zone `_ where you + want to create your Cloud TPU. + * - ACCELERATOR_TYPE + - The TPU version you want to use. Specify the TPU version, followed by a + '-' and the number of TPU cores. For example `v5e-4` specifies a v5e TPU + with 4 cores. For more information, see `TPU versions `_. + * - RUNTIME_VERSION + - The TPU VM runtime version to use. For more information see `TPU VM images `_. + * - SERVICE_ACCOUNT + - The email address for your service account. You can find it in the IAM + Cloud Console under *Service Accounts*. For example: + `tpu-service-account@.iam.gserviceaccount.com` + +Connect to your TPU using SSH: + +.. code-block:: bash + + gcloud compute tpus tpu-vm ssh TPU_NAME + +Create and activate a Conda environment for vLLM: + +.. code-block:: bash -Installation options: + conda create -n vllm python=3.10 -y + conda activate vllm -1. :ref:`Build a docker image with Dockerfile `. -2. :ref:`Build from source `. +Clone the vLLM repository and go to the vLLM directory: + +.. code-block:: bash + + git clone https://github.com/vllm-project/vllm.git && cd vllm + +Uninstall the existing `torch` and `torch_xla` packages: + +.. code-block:: bash + + pip uninstall torch torch-xla -y + +Install `torch` and `torch_xla` + +.. code-block:: bash + + pip install --pre torch==2.6.0.dev20241028+cpu torchvision==0.20.0.dev20241028+cpu --index-url https://download.pytorch.org/whl/nightly/cpu + pip install 'torch_xla[tpu] @ https://storage.googleapis.com/pytorch-xla-releases/wheels/tpuvm/torch_xla-2.6.0.dev-cp310-cp310-linux_x86_64.whl' -f https://storage.googleapis.com/libtpu-releases/index.html + +Install JAX and Pallas: + +.. code-block:: bash + + pip install torch_xla[pallas] -f https://storage.googleapis.com/jax-releases/jax_nightly_releases.html -f https://storage.googleapis.com/jax-releases/jaxlib_nightly_releases.html + pip install jaxlib==0.4.32.dev20240829 jax==0.4.32.dev20240829 -f https://storage.googleapis.com/jax-releases/jax_nightly_releases.html -f https://storage.googleapis.com/jax-releases/jaxlib_nightly_releases.html + +Install other build dependencies: + +.. code-block:: bash + + pip install -r requirements-tpu.txt + VLLM_TARGET_DEVICE="tpu" python setup.py develop + sudo apt-get install libopenblas-base libopenmpi-dev libomp-dev + +Provision Cloud TPUs with GKE +----------------------------- + +For more information about using TPUs with GKE, see +https://cloud.google.com/kubernetes-engine/docs/how-to/tpus +https://cloud.google.com/kubernetes-engine/docs/concepts/tpus +https://cloud.google.com/kubernetes-engine/docs/concepts/plan-tpus .. _build_docker_tpu: Build a docker image with :code:`Dockerfile.tpu` ------------------------------------------------ -`Dockerfile.tpu `_ is provided to build a docker image with TPU support. +You can use `Dockerfile.tpu `_ +to build a Docker image with TPU support. .. code-block:: console $ docker build -f Dockerfile.tpu -t vllm-tpu . - -You can run the docker image with the following command: +Run the Docker image with the following command: .. code-block:: console @@ -56,8 +188,8 @@ First, install the dependencies: $ pip uninstall torch torch-xla -y $ # Install PyTorch and PyTorch XLA. - $ export DATE="20240828" - $ export TORCH_VERSION="2.5.0" + $ export DATE="20241017" + $ export TORCH_VERSION="2.6.0" $ pip install https://storage.googleapis.com/pytorch-xla-releases/wheels/tpuvm/torch-${TORCH_VERSION}.dev${DATE}-cp310-cp310-linux_x86_64.whl $ pip install https://storage.googleapis.com/pytorch-xla-releases/wheels/tpuvm/torch_xla-${TORCH_VERSION}.dev${DATE}-cp310-cp310-linux_x86_64.whl @@ -75,14 +207,12 @@ Next, build vLLM from source. This will only take a few seconds: $ VLLM_TARGET_DEVICE="tpu" python setup.py develop - .. note:: Since TPU relies on XLA which requires static shapes, vLLM bucketizes the possible input shapes and compiles an XLA graph for each different shape. The compilation time may take 20~30 minutes in the first run. However, the compilation time reduces to ~5 minutes afterwards because the XLA graphs are cached in the disk (in :code:`VLLM_XLA_CACHE_PATH` or :code:`~/.cache/vllm/xla_cache` by default). - .. tip:: If you encounter the following error: @@ -93,7 +223,7 @@ Next, build vLLM from source. This will only take a few seconds: ImportError: libopenblas.so.0: cannot open shared object file: No such file or directory - Please install OpenBLAS with the following command: + Install OpenBLAS with the following command: .. code-block:: console diff --git a/docs/source/getting_started/xpu-installation.rst b/docs/source/getting_started/xpu-installation.rst index 151ebb5f1811f..b1868acbc84b0 100644 --- a/docs/source/getting_started/xpu-installation.rst +++ b/docs/source/getting_started/xpu-installation.rst @@ -60,3 +60,21 @@ Build from source - FP16 is the default data type in the current XPU backend. The BF16 data type will be supported in the future. + +Distributed inference and serving +--------------------------------- + +XPU platform supports tensor-parallel inference/serving and also supports pipeline parallel as a beta feature for online serving. We requires Ray as the distributed runtime backend. For example, a reference execution likes following: + +.. code-block:: console + + $ python -m vllm.entrypoints.openai.api_server \ + $ --model=facebook/opt-13b \ + $ --dtype=bfloat16 \ + $ --device=xpu \ + $ --max_model_len=1024 \ + $ --distributed-executor-backend=ray \ + $ --pipeline-parallel-size=2 \ + $ -tp=8 + +By default, a ray instance will be launched automatically if no existing one is detected in system, with ``num-gpus`` equals to ``parallel_config.world_size``. We recommend properly starting a ray cluster before execution, referring helper `script `_. diff --git a/docs/source/index.rst b/docs/source/index.rst index 803d412befb09..2399fcf5faec9 100644 --- a/docs/source/index.rst +++ b/docs/source/index.rst @@ -79,12 +79,15 @@ Documentation serving/openai_compatible_server serving/deploying_with_docker + serving/deploying_with_k8s + serving/deploying_with_nginx serving/distributed_serving serving/metrics serving/env_vars serving/usage_stats serving/integrations serving/tensorizer + serving/compatibility_matrix serving/faq .. toctree:: @@ -131,6 +134,7 @@ Documentation :caption: Developer Documentation dev/sampling_params + dev/pooling_params dev/offline_inference/offline_index dev/engine/engine_index dev/kernel/paged_attention diff --git a/docs/source/models/adding_model.rst b/docs/source/models/adding_model.rst index 5cffb58cafd96..c6d88cc38e99b 100644 --- a/docs/source/models/adding_model.rst +++ b/docs/source/models/adding_model.rst @@ -85,21 +85,21 @@ When it comes to the linear layers, we provide the following options to parallel * :code:`ReplicatedLinear`: Replicates the inputs and weights across multiple GPUs. No memory saving. * :code:`RowParallelLinear`: The input tensor is partitioned along the hidden dimension. The weight matrix is partitioned along the rows (input dimension). An *all-reduce* operation is performed after the matrix multiplication to reduce the results. Typically used for the second FFN layer and the output linear transformation of the attention layer. * :code:`ColumnParallelLinear`: The input tensor is replicated. The weight matrix is partitioned along the columns (output dimension). The result is partitioned along the column dimension. Typically used for the first FFN layer and the separated QKV transformation of the attention layer in the original Transformer. -* :code:`MergedColumnParallelLinear`: Column-parallel linear that merges multiple `ColumnParallelLinear` operators. Typically used for the first FFN layer with weighted activation functions (e.g., SiLU). This class handles the sharded weight loading logic of multiple weight matrices. +* :code:`MergedColumnParallelLinear`: Column-parallel linear that merges multiple :code:`ColumnParallelLinear` operators. Typically used for the first FFN layer with weighted activation functions (e.g., SiLU). This class handles the sharded weight loading logic of multiple weight matrices. * :code:`QKVParallelLinear`: Parallel linear layer for the query, key, and value projections of the multi-head and grouped-query attention mechanisms. When number of key/value heads are less than the world size, this class replicates the key/value heads properly. This class handles the weight loading and replication of the weight matrices. -Note that all the linear layers above take `linear_method` as an input. vLLM will set this parameter according to different quantization schemes to support weight quantization. +Note that all the linear layers above take :code:`linear_method` as an input. vLLM will set this parameter according to different quantization schemes to support weight quantization. 4. Implement the weight loading logic ------------------------------------- You now need to implement the :code:`load_weights` method in your :code:`*ForCausalLM` class. -This method should load the weights from the HuggingFace's checkpoint file and assign them to the corresponding layers in your model. Specifically, for `MergedColumnParallelLinear` and `QKVParallelLinear` layers, if the original model has separated weight matrices, you need to load the different parts separately. +This method should load the weights from the HuggingFace's checkpoint file and assign them to the corresponding layers in your model. Specifically, for :code:`MergedColumnParallelLinear` and :code:`QKVParallelLinear` layers, if the original model has separated weight matrices, you need to load the different parts separately. 5. Register your model ---------------------- -Finally, register your :code:`*ForCausalLM` class to the :code:`_MODELS` in `vllm/model_executor/models/__init__.py `_. +Finally, register your :code:`*ForCausalLM` class to the :code:`_VLLM_MODELS` in `vllm/model_executor/models/registry.py `_. 6. Out-of-Tree Model Integration -------------------------------------------- @@ -114,6 +114,18 @@ Just add the following lines in your code: from your_code import YourModelForCausalLM ModelRegistry.register_model("YourModelForCausalLM", YourModelForCausalLM) +If your model imports modules that initialize CUDA, consider instead lazy-importing it to avoid an error like :code:`RuntimeError: Cannot re-initialize CUDA in forked subprocess`: + +.. code-block:: python + + from vllm import ModelRegistry + + ModelRegistry.register_model("YourModelForCausalLM", "your_code:YourModelForCausalLM") + +.. important:: + If your model is a multimodal model, make sure the model class implements the :class:`~vllm.model_executor.models.interfaces.SupportsMultiModal` interface. + Read more about that :ref:`here `. + If you are running api server with :code:`vllm serve `, you can wrap the entrypoint with the following code: .. code-block:: python @@ -121,7 +133,9 @@ If you are running api server with :code:`vllm serve `, you can wrap the e from vllm import ModelRegistry from your_code import YourModelForCausalLM ModelRegistry.register_model("YourModelForCausalLM", YourModelForCausalLM) - import runpy - runpy.run_module('vllm.entrypoints.openai.api_server', run_name='__main__') + + if __name__ == '__main__': + import runpy + runpy.run_module('vllm.entrypoints.openai.api_server', run_name='__main__') Save the above code in a file and run it with :code:`python your_file.py `. diff --git a/docs/source/models/performance.rst b/docs/source/models/performance.rst index d8750ddc34e8e..23b5ab79a7378 100644 --- a/docs/source/models/performance.rst +++ b/docs/source/models/performance.rst @@ -22,6 +22,8 @@ If you frequently encounter preemptions from the vLLM engine, consider the follo You can also monitor the number of preemption requests through Prometheus metrics exposed by the vLLM. Additionally, you can log the cumulative number of preemption requests by setting disable_log_stats=False. +.. _chunked-prefill: + Chunked Prefill --------------- vLLM supports an experimental feature chunked prefill. Chunked prefill allows to chunk large prefills into smaller chunks and batch them together with decode requests. diff --git a/docs/source/models/spec_decode.rst b/docs/source/models/spec_decode.rst index 50468f25b922a..b02c80aebec69 100644 --- a/docs/source/models/spec_decode.rst +++ b/docs/source/models/spec_decode.rst @@ -30,7 +30,6 @@ The following code configures vLLM in an offline mode to use speculative decodin tensor_parallel_size=1, speculative_model="facebook/opt-125m", num_speculative_tokens=5, - use_v2_block_manager=True, ) outputs = llm.generate(prompts, sampling_params) @@ -44,10 +43,10 @@ To perform the same with an online mode launch the server: .. code-block:: bash python -m vllm.entrypoints.openai.api_server --host 0.0.0.0 --port 8000 --model facebook/opt-6.7b \ - --seed 42 -tp 1 --speculative_model facebook/opt-125m --use-v2-block-manager \ - --num_speculative_tokens 5 --gpu_memory_utilization 0.8 + --seed 42 -tp 1 --speculative_model facebook/opt-125m --use-v2-block-manager \ + --num_speculative_tokens 5 --gpu_memory_utilization 0.8 - Then use a client: +Then use a client: .. code-block:: python @@ -104,7 +103,6 @@ matching n-grams in the prompt. For more information read `this thread. `_. -The following is the list of model architectures that are currently supported by vLLM. +vLLM supports a variety of generative and embedding models from `HuggingFace (HF) Transformers `_. +This page lists the model architectures that are currently supported by vLLM. Alongside each architecture, we include some popular models that use it. ----- +For other models, you can check the :code:`config.json` file inside the model repository. +If the :code:`"architectures"` field contains a model architecture listed below, then it should be supported in theory. + +.. tip:: + The easiest way to check if your model is really supported at runtime is to run the program below: + + .. code-block:: python + + from vllm import LLM + + llm = LLM(model=...) # Name or path of your model + output = llm.generate("Hello, my name is") + print(output) + + If vLLM successfully generates text, it indicates that your model is supported. + +Otherwise, please refer to :ref:`Adding a New Model ` and :ref:`Enabling Multimodal Inputs ` +for instructions on how to implement your model in vLLM. +Alternatively, you can `open an issue on GitHub `_ to request vLLM support. + +.. note:: + To use models from `ModelScope `_ instead of HuggingFace Hub, set an environment variable: + + .. code-block:: shell + + $ export VLLM_USE_MODELSCOPE=True + + And use with :code:`trust_remote_code=True`. + + .. code-block:: python + + from vllm import LLM + + llm = LLM(model=..., revision=..., trust_remote_code=True) # Name or path of your model + output = llm.generate("Hello, my name is") + print(output) + +Text-only Language Models +^^^^^^^^^^^^^^^^^^^^^^^^^ + +Text Generation +--------------- -Decoder-only Language Models -^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. list-table:: - :widths: 25 25 50 5 + :widths: 25 25 50 5 5 :header-rows: 1 * - Architecture - Models - - Example HuggingFace Models + - Example HF Models - :ref:`LoRA ` + - :ref:`PP ` * - :code:`AquilaForCausalLM` - - Aquila & Aquila2 + - Aquila, Aquila2 - :code:`BAAI/Aquila-7B`, :code:`BAAI/AquilaChat-7B`, etc. - ✅︎ + - ✅︎ * - :code:`ArcticForCausalLM` - Arctic - :code:`Snowflake/snowflake-arctic-base`, :code:`Snowflake/snowflake-arctic-instruct`, etc. - + - ✅︎ * - :code:`BaiChuanForCausalLM` - - Baichuan & Baichuan2 + - Baichuan2, Baichuan - :code:`baichuan-inc/Baichuan2-13B-Chat`, :code:`baichuan-inc/Baichuan-7B`, etc. - ✅︎ + - ✅︎ * - :code:`BloomForCausalLM` - BLOOM, BLOOMZ, BLOOMChat - :code:`bigscience/bloom`, :code:`bigscience/bloomz`, etc. - + - ✅︎ + * - :code:`BartForConditionalGeneration` + - BART + - :code:`facebook/bart-base`, :code:`facebook/bart-large-cnn`, etc. + - + - * - :code:`ChatGLMModel` - ChatGLM - :code:`THUDM/chatglm2-6b`, :code:`THUDM/chatglm3-6b`, etc. - ✅︎ + - ✅︎ * - :code:`CohereForCausalLM` - Command-R - :code:`CohereForAI/c4ai-command-r-v01`, etc. - - + - ✅︎ + - ✅︎ * - :code:`DbrxForCausalLM` - DBRX - :code:`databricks/dbrx-base`, :code:`databricks/dbrx-instruct`, etc. - + - ✅︎ * - :code:`DeciLMForCausalLM` - DeciLM - :code:`Deci/DeciLM-7B`, :code:`Deci/DeciLM-7B-instruct`, etc. - + - ✅︎ + * - :code:`DeepseekForCausalLM` + - DeepSeek + - :code:`deepseek-ai/deepseek-llm-67b-base`, :code:`deepseek-ai/deepseek-llm-7b-chat` etc. + - + - ✅︎ + * - :code:`DeepseekV2ForCausalLM` + - DeepSeek-V2 + - :code:`deepseek-ai/DeepSeek-V2`, :code:`deepseek-ai/DeepSeek-V2-Chat` etc. + - + - ✅︎ * - :code:`ExaoneForCausalLM` - EXAONE-3 - :code:`LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct`, etc. - ✅︎ + - ✅︎ * - :code:`FalconForCausalLM` - Falcon - :code:`tiiuae/falcon-7b`, :code:`tiiuae/falcon-40b`, :code:`tiiuae/falcon-rw-7b`, etc. - + - ✅︎ + * - :code:`FalconMambaForCausalLM` + - FalconMamba + - :code:`tiiuae/falcon-mamba-7b`, :code:`tiiuae/falcon-mamba-7b-instruct`, etc. + - ✅︎ + - * - :code:`GemmaForCausalLM` - Gemma - :code:`google/gemma-2b`, :code:`google/gemma-7b`, etc. - ✅︎ + - ✅︎ * - :code:`Gemma2ForCausalLM` - Gemma2 - :code:`google/gemma-2-9b`, :code:`google/gemma-2-27b`, etc. - ✅︎ + - ✅︎ * - :code:`GPT2LMHeadModel` - GPT-2 - :code:`gpt2`, :code:`gpt2-xl`, etc. - + - ✅︎ * - :code:`GPTBigCodeForCausalLM` - StarCoder, SantaCoder, WizardCoder - :code:`bigcode/starcoder`, :code:`bigcode/gpt_bigcode-santacoder`, :code:`WizardLM/WizardCoder-15B-V1.0`, etc. - ✅︎ + - ✅︎ * - :code:`GPTJForCausalLM` - GPT-J - :code:`EleutherAI/gpt-j-6b`, :code:`nomic-ai/gpt4all-j`, etc. - + - ✅︎ * - :code:`GPTNeoXForCausalLM` - GPT-NeoX, Pythia, OpenAssistant, Dolly V2, StableLM - :code:`EleutherAI/gpt-neox-20b`, :code:`EleutherAI/pythia-12b`, :code:`OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5`, :code:`databricks/dolly-v2-12b`, :code:`stabilityai/stablelm-tuned-alpha-7b`, etc. - + - ✅︎ + * - :code:`GraniteForCausalLM` + - Granite 3.0, PowerLM + - :code:`ibm-granite/granite-3.0-2b-base`, :code:`ibm-granite/granite-3.0-8b-instruct`, :code:`ibm/PowerLM-3b`, etc. + - ✅︎ + - ✅︎ + * - :code:`GraniteMoeForCausalLM` + - Granite 3.0 MoE, PowerMoE + - :code:`ibm-granite/granite-3.0-1b-a400m-base`, :code:`ibm-granite/granite-3.0-3b-a800m-instruct`, :code:`ibm/PowerMoE-3b`, etc. + - ✅︎ + - ✅︎ * - :code:`InternLMForCausalLM` - InternLM - :code:`internlm/internlm-7b`, :code:`internlm/internlm-chat-7b`, etc. - ✅︎ + - ✅︎ * - :code:`InternLM2ForCausalLM` - InternLM2 - :code:`internlm/internlm2-7b`, :code:`internlm/internlm2-chat-7b`, etc. - + - ✅︎ * - :code:`JAISLMHeadModel` - Jais - - :code:`core42/jais-13b`, :code:`core42/jais-13b-chat`, :code:`core42/jais-30b-v3`, :code:`core42/jais-30b-chat-v3`, etc. + - :code:`inceptionai/jais-13b`, :code:`inceptionai/jais-13b-chat`, :code:`inceptionai/jais-30b-v3`, :code:`inceptionai/jais-30b-chat-v3`, etc. - + - ✅︎ * - :code:`JambaForCausalLM` - Jamba - - :code:`ai21labs/Jamba-v0.1`, etc. + - :code:`ai21labs/AI21-Jamba-1.5-Large`, :code:`ai21labs/AI21-Jamba-1.5-Mini`, :code:`ai21labs/Jamba-v0.1`, etc. - ✅︎ + - * - :code:`LlamaForCausalLM` - Llama 3.1, Llama 3, Llama 2, LLaMA, Yi - :code:`meta-llama/Meta-Llama-3.1-405B-Instruct`, :code:`meta-llama/Meta-Llama-3.1-70B`, :code:`meta-llama/Meta-Llama-3-70B-Instruct`, :code:`meta-llama/Llama-2-70b-hf`, :code:`01-ai/Yi-34B`, etc. - ✅︎ + - ✅︎ + * - :code:`MambaForCausalLM` + - Mamba + - :code:`state-spaces/mamba-130m-hf`, :code:`state-spaces/mamba-790m-hf`, :code:`state-spaces/mamba-2.8b-hf`, etc. + - + - * - :code:`MiniCPMForCausalLM` - MiniCPM - - :code:`openbmb/MiniCPM-2B-sft-bf16`, :code:`openbmb/MiniCPM-2B-dpo-bf16`, etc. - - + - :code:`openbmb/MiniCPM-2B-sft-bf16`, :code:`openbmb/MiniCPM-2B-dpo-bf16`, :code:`openbmb/MiniCPM-S-1B-sft`, etc. + - ✅︎ + - ✅︎ * - :code:`MiniCPM3ForCausalLM` - MiniCPM3 - :code:`openbmb/MiniCPM3-4B`, etc. - - + - ✅︎ + - ✅︎ * - :code:`MistralForCausalLM` - Mistral, Mistral-Instruct - :code:`mistralai/Mistral-7B-v0.1`, :code:`mistralai/Mistral-7B-Instruct-v0.1`, etc. - ✅︎ + - ✅︎ * - :code:`MixtralForCausalLM` - Mixtral-8x7B, Mixtral-8x7B-Instruct - :code:`mistralai/Mixtral-8x7B-v0.1`, :code:`mistralai/Mixtral-8x7B-Instruct-v0.1`, :code:`mistral-community/Mixtral-8x22B-v0.1`, etc. - ✅︎ + - ✅︎ * - :code:`MPTForCausalLM` - MPT, MPT-Instruct, MPT-Chat, MPT-StoryWriter - :code:`mosaicml/mpt-7b`, :code:`mosaicml/mpt-7b-storywriter`, :code:`mosaicml/mpt-30b`, etc. - + - ✅︎ * - :code:`NemotronForCausalLM` - Nemotron-3, Nemotron-4, Minitron - :code:`nvidia/Minitron-8B-Base`, :code:`mgoin/Nemotron-4-340B-Base-hf-FP8`, etc. - ✅︎ - * - :code:`OLMoEForCausalLM` - - OLMoE - - :code:`allenai/OLMoE-1B-7B-0924`, :code:`allenai/OLMoE-1B-7B-0924-Instruct`, etc. - - + - ✅︎ * - :code:`OLMoForCausalLM` - OLMo - :code:`allenai/OLMo-1B-hf`, :code:`allenai/OLMo-7B-hf`, etc. - + - ✅︎ + * - :code:`OLMoEForCausalLM` + - OLMoE + - :code:`allenai/OLMoE-1B-7B-0924`, :code:`allenai/OLMoE-1B-7B-0924-Instruct`, etc. + - ✅︎ + - ✅︎ * - :code:`OPTForCausalLM` - OPT, OPT-IML - :code:`facebook/opt-66b`, :code:`facebook/opt-iml-max-30b`, etc. - + - ✅︎ * - :code:`OrionForCausalLM` - Orion - :code:`OrionStarAI/Orion-14B-Base`, :code:`OrionStarAI/Orion-14B-Chat`, etc. - + - ✅︎ * - :code:`PhiForCausalLM` - Phi - :code:`microsoft/phi-1_5`, :code:`microsoft/phi-2`, etc. - ✅︎ + - ✅︎ * - :code:`Phi3ForCausalLM` - Phi-3 - :code:`microsoft/Phi-3-mini-4k-instruct`, :code:`microsoft/Phi-3-mini-128k-instruct`, :code:`microsoft/Phi-3-medium-128k-instruct`, etc. - - + - ✅︎ + - ✅︎ * - :code:`Phi3SmallForCausalLM` - Phi-3-Small - :code:`microsoft/Phi-3-small-8k-instruct`, :code:`microsoft/Phi-3-small-128k-instruct`, etc. - + - ✅︎ * - :code:`PhiMoEForCausalLM` - Phi-3.5-MoE - :code:`microsoft/Phi-3.5-MoE-instruct`, etc. - - + - ✅︎ + - ✅︎ * - :code:`PersimmonForCausalLM` - Persimmon - :code:`adept/persimmon-8b-base`, :code:`adept/persimmon-8b-chat`, etc. - + - ✅︎ * - :code:`QWenLMHeadModel` - Qwen - :code:`Qwen/Qwen-7B`, :code:`Qwen/Qwen-7B-Chat`, etc. - - + - ✅︎ + - ✅︎ * - :code:`Qwen2ForCausalLM` - Qwen2 - - :code:`Qwen/Qwen2-beta-7B`, :code:`Qwen/Qwen2-beta-7B-Chat`, etc. + - :code:`Qwen/Qwen2-7B-Instruct`, :code:`Qwen/Qwen2-7B`, etc. + - ✅︎ - ✅︎ * - :code:`Qwen2MoeForCausalLM` - Qwen2MoE - :code:`Qwen/Qwen1.5-MoE-A2.7B`, :code:`Qwen/Qwen1.5-MoE-A2.7B-Chat`, etc. - + - ✅︎ * - :code:`StableLmForCausalLM` - StableLM - - :code:`stabilityai/stablelm-3b-4e1t/` , :code:`stabilityai/stablelm-base-alpha-7b-v2`, etc. + - :code:`stabilityai/stablelm-3b-4e1t`, :code:`stabilityai/stablelm-base-alpha-7b-v2`, etc. - + - ✅︎ * - :code:`Starcoder2ForCausalLM` - Starcoder2 - :code:`bigcode/starcoder2-3b`, :code:`bigcode/starcoder2-7b`, :code:`bigcode/starcoder2-15b`, etc. - + - ✅︎ * - :code:`SolarForCausalLM` - - EXAONE-3 + - Solar Pro - :code:`upstage/solar-pro-preview-instruct`, etc. - - + - ✅︎ + - ✅︎ * - :code:`XverseForCausalLM` - - Xverse + - XVERSE - :code:`xverse/XVERSE-7B-Chat`, :code:`xverse/XVERSE-13B-Chat`, :code:`xverse/XVERSE-65B-Chat`, etc. - - + - ✅︎ + - ✅︎ .. note:: Currently, the ROCm version of vLLM supports Mistral and Mixtral only for context lengths up to 4096. -.. _supported_vlms: +Text Embedding +-------------- + +.. list-table:: + :widths: 25 25 50 5 5 + :header-rows: 1 + + * - Architecture + - Models + - Example HF Models + - :ref:`LoRA ` + - :ref:`PP ` + * - :code:`Gemma2Model` + - Gemma2-based + - :code:`BAAI/bge-multilingual-gemma2`, etc. + - + - ✅︎ + * - :code:`MistralModel` + - Mistral-based + - :code:`intfloat/e5-mistral-7b-instruct`, etc. + - + - ✅︎ + +.. important:: + Some model architectures support both generation and embedding tasks. + In this case, you have to pass :code:`--task embedding` to run the model in embedding mode. + +Reward Modeling +--------------- + +.. list-table:: + :widths: 25 25 50 5 5 + :header-rows: 1 + + * - Architecture + - Models + - Example HF Models + - :ref:`LoRA ` + - :ref:`PP ` + * - :code:`Qwen2ForRewardModel` + - Qwen2-based + - :code:`Qwen/Qwen2.5-Math-RM-72B`, etc. + - + - ✅︎ + +.. note:: + As an interim measure, these models are supported via Embeddings API. See `this RFC `_ for upcoming changes. + +Classification +--------------- + +.. list-table:: + :widths: 25 25 50 5 5 + :header-rows: 1 + + * - Architecture + - Models + - Example HF Models + - :ref:`LoRA ` + - :ref:`PP ` + * - :code:`Qwen2ForSequenceClassification` + - Qwen2-based + - :code:`jason9693/Qwen2.5-1.5B-apeach`, etc. + - + - ✅︎ + +.. note:: + As an interim measure, these models are supported via Embeddings API. It will be supported via Classification API in the future (no reference APIs exist now). + Multimodal Language Models -^^^^^^^^^^^^^^^^^^^^^^^^^^^^ +^^^^^^^^^^^^^^^^^^^^^^^^^^ + +The following modalities are supported depending on the model: + +- **T**\ ext +- **I**\ mage +- **V**\ ideo +- **A**\ udio + +Any combination of modalities joined by :code:`+` are supported. + +- e.g.: :code:`T + I` means that the model supports text-only, image-only, and text-with-image inputs. + +On the other hand, modalities separated by :code:`/` are mutually exclusive. + +- e.g.: :code:`T / I` means that the model supports text-only and image-only inputs, but not text-with-image inputs. + +.. _supported_vlms: + +Text Generation +--------------- .. list-table:: - :widths: 25 25 25 25 5 + :widths: 25 25 15 25 5 5 :header-rows: 1 * - Architecture - Models - - Modalities - - Example HuggingFace Models + - Inputs + - Example HF Models - :ref:`LoRA ` + - :ref:`PP ` * - :code:`Blip2ForConditionalGeneration` - BLIP-2 - - Image\ :sup:`E` + - T + I\ :sup:`E` - :code:`Salesforce/blip2-opt-2.7b`, :code:`Salesforce/blip2-opt-6.7b`, etc. - + - ✅︎ * - :code:`ChameleonForConditionalGeneration` - Chameleon - - Image + - T + I - :code:`facebook/chameleon-7b` etc. - + - ✅︎ * - :code:`FuyuForCausalLM` - Fuyu - - Image + - T + I - :code:`adept/fuyu-8b` etc. - + - ✅︎ + * - :code:`ChatGLMModel` + - GLM-4V + - T + I + - :code:`THUDM/glm-4v-9b` etc. + - + - ✅︎ * - :code:`InternVLChatModel` - InternVL2 - - Image\ :sup:`E+` - - :code:`OpenGVLab/InternVL2-4B`, :code:`OpenGVLab/InternVL2-8B`, etc. + - T + I\ :sup:`E+` + - :code:`OpenGVLab/Mono-InternVL-2B`, :code:`OpenGVLab/InternVL2-4B`, :code:`OpenGVLab/InternVL2-8B`, etc. - + - ✅︎ * - :code:`LlavaForConditionalGeneration` - LLaVA-1.5 - - Image\ :sup:`E+` + - T + I\ :sup:`E+` - :code:`llava-hf/llava-1.5-7b-hf`, :code:`llava-hf/llava-1.5-13b-hf`, etc. - + - ✅︎ * - :code:`LlavaNextForConditionalGeneration` - LLaVA-NeXT - - Image\ :sup:`E+` + - T + I\ :sup:`E+` - :code:`llava-hf/llava-v1.6-mistral-7b-hf`, :code:`llava-hf/llava-v1.6-vicuna-7b-hf`, etc. - + - ✅︎ * - :code:`LlavaNextVideoForConditionalGeneration` - LLaVA-NeXT-Video - - Video + - T + V - :code:`llava-hf/LLaVA-NeXT-Video-7B-hf`, etc. - + - ✅︎ * - :code:`LlavaOnevisionForConditionalGeneration` - LLaVA-Onevision - - Image\ :sup:`+` / Video + - T + I\ :sup:`+` + V\ :sup:`+` - :code:`llava-hf/llava-onevision-qwen2-7b-ov-hf`, :code:`llava-hf/llava-onevision-qwen2-0.5b-ov-hf`, etc. - + - ✅︎ * - :code:`MiniCPMV` - MiniCPM-V - - Image\ :sup:`+` + - T + I\ :sup:`E+` - :code:`openbmb/MiniCPM-V-2` (see note), :code:`openbmb/MiniCPM-Llama3-V-2_5`, :code:`openbmb/MiniCPM-V-2_6`, etc. - - + - ✅︎ + - ✅︎ * - :code:`MllamaForConditionalGeneration` - Llama 3.2 - - Image + - T + I\ :sup:`+` - :code:`meta-llama/Llama-3.2-90B-Vision-Instruct`, :code:`meta-llama/Llama-3.2-11B-Vision`, etc. - + - + * - :code:`MolmoForCausalLM` + - Molmo + - T + I + - :code:`allenai/Molmo-7B-D-0924`, :code:`allenai/Molmo-72B-0924`, etc. + - + - ✅︎ + * - :code:`NVLM_D_Model` + - NVLM-D 1.0 + - T + I\ :sup:`E+` + - :code:`nvidia/NVLM-D-72B`, etc. + - + - ✅︎ * - :code:`PaliGemmaForConditionalGeneration` - PaliGemma - - Image\ :sup:`E` + - T + I\ :sup:`E` - :code:`google/paligemma-3b-pt-224`, :code:`google/paligemma-3b-mix-224`, etc. - + - ✅︎ * - :code:`Phi3VForCausalLM` - Phi-3-Vision, Phi-3.5-Vision - - Image\ :sup:`E+` + - T + I\ :sup:`E+` - :code:`microsoft/Phi-3-vision-128k-instruct`, :code:`microsoft/Phi-3.5-vision-instruct` etc. - + - ✅︎ * - :code:`PixtralForConditionalGeneration` - Pixtral - - Image\ :sup:`+` - - :code:`mistralai/Pixtral-12B-2409` + - T + I\ :sup:`+` + - :code:`mistralai/Pixtral-12B-2409`, :code:`mistral-community/pixtral-12b` etc. - + - ✅︎ * - :code:`QWenLMHeadModel` - Qwen-VL - - Image\ :sup:`E+` + - T + I\ :sup:`E+` - :code:`Qwen/Qwen-VL`, :code:`Qwen/Qwen-VL-Chat`, etc. + - ✅︎ + - ✅︎ + * - :code:`Qwen2AudioForConditionalGeneration` + - Qwen2-Audio + - T + A\ :sup:`+` + - :code:`Qwen/Qwen2-Audio-7B-Instruct` - + - ✅︎ * - :code:`Qwen2VLForConditionalGeneration` - Qwen2-VL - - Image\ :sup:`E+` / Video\ :sup:`+` + - T + I\ :sup:`E+` + V\ :sup:`+` - :code:`Qwen/Qwen2-VL-2B-Instruct`, :code:`Qwen/Qwen2-VL-7B-Instruct`, :code:`Qwen/Qwen2-VL-72B-Instruct`, etc. - + - ✅︎ * - :code:`UltravoxModel` - Ultravox - - Audio\ :sup:`E+` + - T + A\ :sup:`E+` - :code:`fixie-ai/ultravox-v0_3` - + - ✅︎ | :sup:`E` Pre-computed embeddings can be inputted for this modality. | :sup:`+` Multiple items can be inputted per text prompt for this modality. +.. note:: + vLLM currently only supports adding LoRA to the language backbone of multimodal models. + .. note:: For :code:`openbmb/MiniCPM-V-2`, the official repo doesn't work yet, so we need to use a fork (:code:`HwwwH/MiniCPM-V-2`) for now. For more details, please see: https://github.com/vllm-project/vllm/pull/4087#issuecomment-2250397630 +Multimodal Embedding +-------------------- -If your model uses one of the above model architectures, you can seamlessly run your model with vLLM. -Otherwise, please refer to :ref:`Adding a New Model ` and :ref:`Enabling Multimodal Inputs ` -for instructions on how to implement support for your model. -Alternatively, you can raise an issue on our `GitHub `_ project. - -.. tip:: - The easiest way to check if your model is supported is to run the program below: - - .. code-block:: python - - from vllm import LLM - - llm = LLM(model=...) # Name or path of your model - output = llm.generate("Hello, my name is") - print(output) - - If vLLM successfully generates text, it indicates that your model is supported. - -.. tip:: - To use models from `ModelScope `_ instead of HuggingFace Hub, set an environment variable: - - .. code-block:: shell - - $ export VLLM_USE_MODELSCOPE=True - - And use with :code:`trust_remote_code=True`. - - .. code-block:: python - - from vllm import LLM +.. list-table:: + :widths: 25 25 15 25 5 5 + :header-rows: 1 - llm = LLM(model=..., revision=..., trust_remote_code=True) # Name or path of your model - output = llm.generate("Hello, my name is") - print(output) + * - Architecture + - Models + - Inputs + - Example HF Models + - :ref:`LoRA ` + - :ref:`PP ` + * - :code:`LlavaNextForConditionalGeneration` + - LLaVA-NeXT-based + - T / I + - :code:`royokong/e5-v` + - + - ✅︎ + * - :code:`Phi3VForCausalLM` + - Phi-3-Vision-based + - T + I + - :code:`TIGER-Lab/VLM2Vec-Full` + - 🚧 + - ✅︎ +.. important:: + Some model architectures support both generation and embedding tasks. + In this case, you have to pass :code:`--task embedding` to run the model in embedding mode. Model Support Policy ===================== diff --git a/docs/source/models/vlm.rst b/docs/source/models/vlm.rst index 3f4f01e3ae7ac..3377502a6db28 100644 --- a/docs/source/models/vlm.rst +++ b/docs/source/models/vlm.rst @@ -6,10 +6,9 @@ Using VLMs vLLM provides experimental support for Vision Language Models (VLMs). See the :ref:`list of supported VLMs here `. This document shows you how to run and serve these models using vLLM. -.. important:: - We are actively iterating on VLM support. Expect breaking changes to VLM usage and development in upcoming releases without prior deprecation. - - We are continuously improving user & developer experience for VLMs. Please `open an issue on GitHub `_ if you have any feedback or feature requests. +.. note:: + We are actively iterating on VLM support. See `this RFC `_ for upcoming changes, + and `open an issue on GitHub `_ if you have any feedback or feature requests. Offline Inference ----------------- @@ -23,14 +22,10 @@ The :class:`~vllm.LLM` class can be instantiated in much the same way as languag llm = LLM(model="llava-hf/llava-1.5-7b-hf") -.. note:: - We have removed all vision language related CLI args in the ``0.5.1`` release. **This is a breaking change**, so please update your code to follow - the above snippet. Specifically, ``image_feature_size`` can no longer be specified as we now calculate that internally for each model. - To pass an image to the model, note the following in :class:`vllm.inputs.PromptType`: * ``prompt``: The prompt should follow the format that is documented on HuggingFace. -* ``multi_modal_data``: This is a dictionary that follows the schema defined in :class:`vllm.multimodal.MultiModalDataDict`. +* ``multi_modal_data``: This is a dictionary that follows the schema defined in :class:`vllm.multimodal.MultiModalDataDict`. .. code-block:: python @@ -39,7 +34,7 @@ To pass an image to the model, note the following in :class:`vllm.inputs.PromptT # Load the image using PIL.Image image = PIL.Image.open(...) - + # Single prompt inference outputs = llm.generate({ "prompt": prompt, @@ -62,18 +57,25 @@ To pass an image to the model, note the following in :class:`vllm.inputs.PromptT print(generated_text) # Inference with image embeddings as input with additional parameters - # Specifically, we are conducting a trial run of Qwen2VL with the new input format, as the model utilizes additional parameters for calculating positional encoding. - image_embeds = torch.load(...) # torch.Tensor of shape (1, image_feature_size, hidden_size of LM) - image_grid_thw = torch.load(...) # torch.Tensor of shape (1, 3) + # Specifically, we are conducting a trial run of Qwen2VL and MiniCPM-V with the new input format, which utilizes additional parameters. + mm_data = {} + + image_embeds = torch.load(...) # torch.Tensor of shape (num_images, image_feature_size, hidden_size of LM) + # For Qwen2VL, image_grid_thw is needed to calculate positional encoding. + mm_data['image'] = { + "image_embeds": image_embeds, + "image_grid_thw": torch.load(...) # torch.Tensor of shape (1, 3), + } + # For MiniCPM-V, image_size_list is needed to calculate details of the sliced image. mm_data['image'] = { "image_embeds": image_embeds, - "image_grid_thw": image_grid_thw, + "image_size_list": [image.size] # list of image sizes } outputs = llm.generate({ "prompt": prompt, "multi_modal_data": mm_data, }) - + for o in outputs: generated_text = o.outputs[0].text print(generated_text) @@ -121,7 +123,7 @@ Instead of passing in a single image, you can pass in a list of images. .. code-block:: python # Refer to the HuggingFace repo for the correct format to use - prompt = "<|user|>\n\n\nWhat is the content of each image?<|end|>\n<|assistant|>\n" + prompt = "<|user|>\n<|image_1|>\n<|image_2|>\nWhat is the content of each image?<|end|>\n<|assistant|>\n" # Load the images using PIL.Image image1 = PIL.Image.open(...) @@ -140,6 +142,33 @@ Instead of passing in a single image, you can pass in a list of images. A code example can be found in `examples/offline_inference_vision_language_multi_image.py `_. +Multi-image input can be extended to perform video captioning. We show this with `Qwen2-VL `_ as it supports videos: + +.. code-block:: python + + # Specify the maximum number of frames per video to be 4. This can be changed. + llm = LLM("Qwen/Qwen2-VL-2B-Instruct", limit_mm_per_prompt={"image": 4}) + + # Create the request payload. + video_frames = ... # load your video making sure it only has the number of frames specified earlier. + message = { + "role": "user", + "content": [ + {"type": "text", "text": "Describe this set of frames. Consider the frames to be a part of the same video."}, + ], + } + for i in range(len(video_frames)): + base64_image = encode_image(video_frames[i]) # base64 encoding. + new_image = {"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{base64_image}"}} + message["content"].append(new_image) + + # Perform inference and log output. + outputs = llm.chat([message]) + + for o in outputs: + generated_text = o.outputs[0].text + print(generated_text) + Online Inference ---------------- @@ -152,11 +181,11 @@ Below is an example on how to launch the same ``microsoft/Phi-3.5-vision-instruc .. code-block:: bash - vllm serve microsoft/Phi-3.5-vision-instruct --max-model-len 4096 \ - --trust-remote-code --limit-mm-per-prompt image=2 + vllm serve microsoft/Phi-3.5-vision-instruct --task generate \ + --trust-remote-code --max-model-len 4096 --limit-mm-per-prompt image=2 .. important:: - Since OpenAI Vision API is based on `Chat Completions `_ API, + Since OpenAI Vision API is based on `Chat Completions API `_, a chat template is **required** to launch the API server. Although Phi-3.5-Vision comes with a chat template, for other models you may have to provide one if the model's tokenizer does not come with it. @@ -211,16 +240,70 @@ To consume the server, you can use the OpenAI client like in the example below: ) print("Chat completion output:", chat_response.choices[0].message.content) +A full code example can be found in `examples/openai_chat_completion_client_for_multimodal.py `_. -A full code example can be found in `examples/openai_vision_api_client.py `_. +.. tip:: + There is no need to place image placeholders in the text content of the API request - they are already represented by the image content. + In fact, you can place image placeholders in the middle of the text by interleaving text and image content. .. note:: By default, the timeout for fetching images through http url is ``5`` seconds. You can override this by setting the environment variable: - .. code-block:: shell + .. code-block:: console - export VLLM_IMAGE_FETCH_TIMEOUT= + $ export VLLM_IMAGE_FETCH_TIMEOUT= -.. note:: - There is no need to format the prompt in the API request since it will be handled by the server. +Chat Embeddings API +^^^^^^^^^^^^^^^^^^^ + +vLLM's Chat Embeddings API is a superset of OpenAI's `Embeddings API `_, +where a list of ``messages`` can be passed instead of batched ``inputs``. This enables multi-modal inputs to be passed to embedding models. + +.. tip:: + The schema of ``messages`` is exactly the same as in Chat Completions API. + +In this example, we will serve the ``TIGER-Lab/VLM2Vec-Full`` model. + +.. code-block:: bash + + vllm serve TIGER-Lab/VLM2Vec-Full --task embedding \ + --trust-remote-code --max-model-len 4096 --chat-template examples/template_vlm2vec.jinja + +.. important:: + + Since VLM2Vec has the same model architecture as Phi-3.5-Vision, we have to explicitly pass ``--task embedding`` + to run this model in embedding mode instead of text generation mode. + +.. important:: + + VLM2Vec does not expect chat-based input. We use a `custom chat template `_ + to combine the text and images together. + +Since the request schema is not defined by OpenAI client, we post a request to the server using the lower-level ``requests`` library: + +.. code-block:: python + + import requests + + image_url = "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg" + + response = requests.post( + "http://localhost:8000/v1/embeddings", + json={ + "model": "TIGER-Lab/VLM2Vec-Full", + "messages": [{ + "role": "user", + "content": [ + {"type": "image_url", "image_url": {"url": image_url}}, + {"type": "text", "text": "Represent the given image."}, + ], + }], + "encoding_format": "float", + }, + ) + response.raise_for_status() + response_json = response.json() + print("Embedding output:", response_json["data"][0]["embedding"]) + +A full code example can be found in `examples/openai_chat_embedding_client_for_multimodal.py `_. diff --git a/docs/source/quantization/fp8.rst b/docs/source/quantization/fp8.rst index d7d9b21b4b949..aacd07a34ad46 100644 --- a/docs/source/quantization/fp8.rst +++ b/docs/source/quantization/fp8.rst @@ -106,7 +106,7 @@ Install ``vllm`` and ``lm-evaluation-harness``: .. code-block:: console - $ pip install vllm lm_eval==0.4.3 + $ pip install vllm lm-eval==0.4.4 Load and run the model in ``vllm``: diff --git a/docs/source/quantization/supported_hardware.rst b/docs/source/quantization/supported_hardware.rst index ea587e0525a74..9bf0cdb80376d 100644 --- a/docs/source/quantization/supported_hardware.rst +++ b/docs/source/quantization/supported_hardware.rst @@ -28,7 +28,7 @@ The table below shows the compatibility of various quantization implementations - ✅︎ - ✗ - ✗ - - ✗ + - ✅︎ - ✗ - ✗ * - GPTQ @@ -61,7 +61,7 @@ The table below shows the compatibility of various quantization implementations - ✅︎ - ✗ - ✗ - - ✗ + - ✅︎ - ✗ - ✗ * - FP8 (W8A8) diff --git a/docs/source/serving/compatibility_matrix.rst b/docs/source/serving/compatibility_matrix.rst new file mode 100644 index 0000000000000..cab19e4ec5b6c --- /dev/null +++ b/docs/source/serving/compatibility_matrix.rst @@ -0,0 +1,427 @@ +.. _compatibility_matrix: + +Compatibility Matrix +==================== + +The tables below show mutually exclusive features and the support on some hardware. + +.. note:: + + Check the '✗' with links to see tracking issue for unsupported feature/hardware combination. + +Feature x Feature +----------------- + + +.. raw:: html + + + +.. list-table:: + :header-rows: 1 + :widths: auto + + * - Feature + - :ref:`CP ` + - :ref:`APC ` + - :ref:`LoRA ` + - :abbr:`prmpt adptr (Prompt Adapter)` + - :ref:`SD ` + - CUDA graph + - :abbr:`enc-dec (Encoder-Decoder Models)` + - :abbr:`logP (Logprobs)` + - :abbr:`prmpt logP (Prompt Logprobs)` + - :abbr:`async output (Async Output Processing)` + - multi-step + - :abbr:`MM (Multimodal)` + - best-of + - beam-search + - :abbr:`guided dec (Guided Decoding)` + * - :ref:`CP ` + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + * - :ref:`APC ` + - ✅ + - + - + - + - + - + - + - + - + - + - + - + - + - + - + * - :ref:`LoRA ` + - `✗ `__ + - ✅ + - + - + - + - + - + - + - + - + - + - + - + - + - + * - :abbr:`prmpt adptr (Prompt Adapter)` + - ✅ + - ✅ + - ✅ + - + - + - + - + - + - + - + - + - + - + - + - + * - :ref:`SD ` + - ✗ + - ✅ + - ✗ + - ✅ + - + - + - + - + - + - + - + - + - + - + - + * - CUDA graph + - ✅ + - ✅ + - ✅ + - ✅ + - ✅ + - + - + - + - + - + - + - + - + - + - + * - :abbr:`enc-dec (Encoder-Decoder Models)` + - ✗ + - `✗ `__ + - ✗ + - ✗ + - `✗ `__ + - ✅ + - + - + - + - + - + - + - + - + - + * - :abbr:`logP (Logprobs)` + - ✅ + - ✅ + - ✅ + - ✅ + - ✅ + - ✅ + - ✅ + - + - + - + - + - + - + - + - + * - :abbr:`prmpt logP (Prompt Logprobs)` + - ✅ + - ✅ + - ✅ + - ✅ + - `✗ `__ + - ✅ + - ✅ + - ✅ + - + - + - + - + - + - + - + * - :abbr:`async output (Async Output Processing)` + - ✅ + - ✅ + - ✅ + - ✅ + - ✗ + - ✅ + - ✗ + - ✅ + - ✅ + - + - + - + - + - + - + * - multi-step + - ✗ + - ✅ + - ✗ + - ✅ + - ✗ + - ✅ + - ✗ + - ✅ + - `✗ `__ + - ✅ + - + - + - + - + - + * - :abbr:`MM (Multimodal)` + - `✗ `__ + - `✗ `__ + - `✗ `__ + - ? + - ? + - ✅ + - ✗ + - ✅ + - ✅ + - ✅ + - ? + - + - + - + - + * - best-of + - ✅ + - ✅ + - ✅ + - ✅ + - `✗ `__ + - ✅ + - ✅ + - ✅ + - ✅ + - ? + - `✗ `__ + - ✅ + - + - + - + * - beam-search + - ✅ + - ✅ + - ✅ + - ✅ + - `✗ `__ + - ✅ + - ✅ + - ✅ + - ✅ + - ? + - `✗ `__ + - ? + - ✅ + - + - + * - :abbr:`guided dec (Guided Decoding)` + - ✅ + - ✅ + - ? + - ? + - ✅ + - ✅ + - ? + - ✅ + - ✅ + - ✅ + - `✗ `__ + - ? + - ✅ + - ✅ + - + + +Feature x Hardware +^^^^^^^^^^^^^^^^^^ + +.. list-table:: + :header-rows: 1 + :widths: auto + + * - Feature + - Volta + - Turing + - Ampere + - Ada + - Hopper + - CPU + - AMD + * - :ref:`CP ` + - `✗ `__ + - ✅ + - ✅ + - ✅ + - ✅ + - ✗ + - ✅ + * - :ref:`APC ` + - `✗ `__ + - ✅ + - ✅ + - ✅ + - ✅ + - ✗ + - ✅ + * - :ref:`LoRA ` + - ✅ + - ✅ + - ✅ + - ✅ + - ✅ + - `✗ `__ + - ✅ + * - :abbr:`prmpt adptr (Prompt Adapter)` + - ✅ + - ✅ + - ✅ + - ✅ + - ✅ + - `✗ `__ + - ✅ + * - :ref:`SD ` + - ✅ + - ✅ + - ✅ + - ✅ + - ✅ + - ✅ + - ✅ + * - CUDA graph + - ✅ + - ✅ + - ✅ + - ✅ + - ✅ + - ✗ + - ✅ + * - :abbr:`enc-dec (Encoder-Decoder Models)` + - ✅ + - ✅ + - ✅ + - ✅ + - ✅ + - `✗ `__ + - ✗ + * - :abbr:`logP (Logprobs)` + - ✅ + - ✅ + - ✅ + - ✅ + - ✅ + - ✅ + - ✅ + * - :abbr:`prmpt logP (Prompt Logprobs)` + - ✅ + - ✅ + - ✅ + - ✅ + - ✅ + - ✅ + - ✅ + * - :abbr:`async output (Async Output Processing)` + - ✅ + - ✅ + - ✅ + - ✅ + - ✅ + - ✗ + - ✗ + * - multi-step + - ✅ + - ✅ + - ✅ + - ✅ + - ✅ + - `✗ `__ + - ✅ + * - :abbr:`MM (Multimodal)` + - ✅ + - ✅ + - ✅ + - ✅ + - ✅ + - ✅ + - ✅ + * - best-of + - ✅ + - ✅ + - ✅ + - ✅ + - ✅ + - ✅ + - ✅ + * - beam-search + - ✅ + - ✅ + - ✅ + - ✅ + - ✅ + - ✅ + - ✅ + * - :abbr:`guided dec (Guided Decoding)` + - ✅ + - ✅ + - ✅ + - ✅ + - ✅ + - ✅ + - ✅ diff --git a/docs/source/serving/deploying_with_k8s.rst b/docs/source/serving/deploying_with_k8s.rst new file mode 100644 index 0000000000000..7dc076dc709df --- /dev/null +++ b/docs/source/serving/deploying_with_k8s.rst @@ -0,0 +1,175 @@ +.. _deploying_with_k8s: + +Deploying with Kubernetes +========================== + +Using Kubernetes to deploy vLLM is a scalable and efficient way to serve machine learning models. This guide will walk you through the process of deploying vLLM with Kubernetes, including the necessary prerequisites, steps for deployment, and testing. + +Prerequisites +------------- +Before you begin, ensure that you have the following: + +- A running Kubernetes cluster +- NVIDIA Kubernetes Device Plugin (`k8s-device-plugin`): This can be found at `https://github.com/NVIDIA/k8s-device-plugin/` +- Available GPU resources in your cluster + +Deployment Steps +---------------- + +1. **Create a PVC , Secret and Deployment for vLLM** + + +PVC is used to store the model cache and it is optional, you can use hostPath or other storage options + +.. code-block:: yaml + + apiVersion: v1 + kind: PersistentVolumeClaim + metadata: + name: mistral-7b + namespace: default + spec: + accessModes: + - ReadWriteOnce + resources: + requests: + storage: 50Gi + storageClassName: default + volumeMode: Filesystem + +Secret is optional and only required for accessing gated models, you can skip this step if you are not using gated models + +.. code-block:: yaml + + apiVersion: v1 + kind: Secret + metadata: + name: hf-token-secret + namespace: default + type: Opaque + data: + token: "REPLACE_WITH_TOKEN" + + +Create a deployment file for vLLM to run the model server. The following example deploys the `Mistral-7B-Instruct-v0.3` model: + +.. code-block:: yaml + + apiVersion: apps/v1 + kind: Deployment + metadata: + name: mistral-7b + namespace: default + labels: + app: mistral-7b + spec: + replicas: 1 + selector: + matchLabels: + app: mistral-7b + template: + metadata: + labels: + app: mistral-7b + spec: + volumes: + - name: cache-volume + persistentVolumeClaim: + claimName: mistral-7b + # vLLM needs to access the host's shared memory for tensor parallel inference. + - name: shm + emptyDir: + medium: Memory + sizeLimit: "2Gi" + containers: + - name: mistral-7b + image: vllm/vllm-openai:latest + command: ["/bin/sh", "-c"] + args: [ + "vllm serve mistralai/Mistral-7B-Instruct-v0.3 --trust-remote-code --enable-chunked-prefill --max_num_batched_tokens 1024" + ] + env: + - name: HUGGING_FACE_HUB_TOKEN + valueFrom: + secretKeyRef: + name: hf-token-secret + key: token + ports: + - containerPort: 8000 + resources: + limits: + cpu: "10" + memory: 20G + nvidia.com/gpu: "1" + requests: + cpu: "2" + memory: 6G + nvidia.com/gpu: "1" + volumeMounts: + - mountPath: /root/.cache/huggingface + name: cache-volume + - name: shm + mountPath: /dev/shm + livenessProbe: + httpGet: + path: /health + port: 8000 + initialDelaySeconds: 60 + periodSeconds: 10 + readinessProbe: + httpGet: + path: /health + port: 8000 + initialDelaySeconds: 60 + periodSeconds: 5 + +2. **Create a Kubernetes Service for vLLM** + +Next, create a Kubernetes Service file to expose the `mistral-7b` deployment: + +.. code-block:: yaml + + apiVersion: v1 + kind: Service + metadata: + name: mistral-7b + namespace: default + spec: + ports: + - name: http-mistral-7b + port: 80 + protocol: TCP + targetPort: 8000 + # The label selector should match the deployment labels & it is useful for prefix caching feature + selector: + app: mistral-7b + sessionAffinity: None + type: ClusterIP + +3. **Deploy and Test** + +Apply the deployment and service configurations using ``kubectl apply -f ``: + +.. code-block:: console + + kubectl apply -f deployment.yaml + kubectl apply -f service.yaml + +To test the deployment, run the following ``curl`` command: + +.. code-block:: console + + curl http://mistral-7b.default.svc.cluster.local/v1/completions \ + -H "Content-Type: application/json" \ + -d '{ + "model": "facebook/opt-125m", + "prompt": "San Francisco is a", + "max_tokens": 7, + "temperature": 0 + }' + +If the service is correctly deployed, you should receive a response from the vLLM model. + +Conclusion +---------- +Deploying vLLM with Kubernetes allows for efficient scaling and management of ML models leveraging GPU resources. By following the steps outlined above, you should be able to set up and test a vLLM deployment within your Kubernetes cluster. If you encounter any issues or have suggestions, please feel free to contribute to the documentation. \ No newline at end of file diff --git a/docs/source/serving/deploying_with_kserve.rst b/docs/source/serving/deploying_with_kserve.rst index 7f22766e09aef..01d7ccc6e9300 100644 --- a/docs/source/serving/deploying_with_kserve.rst +++ b/docs/source/serving/deploying_with_kserve.rst @@ -5,4 +5,4 @@ Deploying with KServe vLLM can be deployed with `KServe `_ on Kubernetes for highly scalable distributed model serving. -Please see `this guide `_ for more details on using vLLM with KServe. +Please see `this guide `_ for more details on using vLLM with KServe. diff --git a/docs/source/serving/deploying_with_nginx.rst b/docs/source/serving/deploying_with_nginx.rst new file mode 100644 index 0000000000000..b5dff02b6bae6 --- /dev/null +++ b/docs/source/serving/deploying_with_nginx.rst @@ -0,0 +1,142 @@ +.. _nginxloadbalancer: + +Deploying with Nginx Loadbalancer +================================= + +This document shows how to launch multiple vLLM serving containers and use Nginx to act as a load balancer between the servers. + +Table of contents: + +#. :ref:`Build Nginx Container ` +#. :ref:`Create Simple Nginx Config file ` +#. :ref:`Build vLLM Container ` +#. :ref:`Create Docker Network ` +#. :ref:`Launch vLLM Containers ` +#. :ref:`Launch Nginx ` +#. :ref:`Verify That vLLM Servers Are Ready ` + +.. _nginxloadbalancer_nginx_build: + +Build Nginx Container +--------------------- + +This guide assumes that you have just cloned the vLLM project and you're currently in the vllm root directory. + +.. code-block:: console + + export vllm_root=`pwd` + +Create a file named ``Dockerfile.nginx``: + +.. code-block:: console + + FROM nginx:latest + RUN rm /etc/nginx/conf.d/default.conf + EXPOSE 80 + CMD ["nginx", "-g", "daemon off;"] + +Build the container: + +.. code-block:: console + + docker build . -f Dockerfile.nginx --tag nginx-lb + +.. _nginxloadbalancer_nginx_conf: + +Create Simple Nginx Config file +------------------------------- + +Create a file named ``nginx_conf/nginx.conf``. Note that you can add as many servers as you'd like. In the below example we'll start with two. To add more, add another ``server vllmN:8000 max_fails=3 fail_timeout=10000s;`` entry to ``upstream backend``. + +.. code-block:: console + + upstream backend { + least_conn; + server vllm0:8000 max_fails=3 fail_timeout=10000s; + server vllm1:8000 max_fails=3 fail_timeout=10000s; + } + server { + listen 80; + location / { + proxy_pass http://backend; + proxy_set_header Host $host; + proxy_set_header X-Real-IP $remote_addr; + proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for; + proxy_set_header X-Forwarded-Proto $scheme; + } + } + +.. _nginxloadbalancer_nginx_vllm_container: + +Build vLLM Container +-------------------- + +.. code-block:: console + + cd $vllm_root + docker build -f Dockerfile . --tag vllm + + +If you are behind proxy, you can pass the proxy settings to the docker build command as shown below: + +.. code-block:: console + + cd $vllm_root + docker build -f Dockerfile . --tag vllm --build-arg http_proxy=$http_proxy --build-arg https_proxy=$https_proxy + +.. _nginxloadbalancer_nginx_docker_network: + +Create Docker Network +--------------------- + +.. code-block:: console + + docker network create vllm_nginx + + +.. _nginxloadbalancer_nginx_launch_container: + +Launch vLLM Containers +---------------------- + +Notes: + +* If you have your HuggingFace models cached somewhere else, update ``hf_cache_dir`` below. +* If you don't have an existing HuggingFace cache you will want to start ``vllm0`` and wait for the model to complete downloading and the server to be ready. This will ensure that ``vllm1`` can leverage the model you just downloaded and it won't have to be downloaded again. +* The below example assumes GPU backend used. If you are using CPU backend, remove ``--gpus all``, add ``VLLM_CPU_KVCACHE_SPACE`` and ``VLLM_CPU_OMP_THREADS_BIND`` environment variables to the docker run command. +* Adjust the model name that you want to use in your vLLM servers if you don't want to use ``Llama-2-7b-chat-hf``. + +.. code-block:: console + + mkdir -p ~/.cache/huggingface/hub/ + hf_cache_dir=~/.cache/huggingface/ + docker run -itd --ipc host --privileged --network vllm_nginx --gpus all --shm-size=10.24gb -v $hf_cache_dir:/root/.cache/huggingface/ -p 8081:8000 --name vllm0 vllm --model meta-llama/Llama-2-7b-chat-hf + docker run -itd --ipc host --privileged --network vllm_nginx --gpus all --shm-size=10.24gb -v $hf_cache_dir:/root/.cache/huggingface/ -p 8082:8000 --name vllm1 vllm --model meta-llama/Llama-2-7b-chat-hf + +.. note:: + If you are behind proxy, you can pass the proxy settings to the docker run command via ``-e http_proxy=$http_proxy -e https_proxy=$https_proxy``. + +.. _nginxloadbalancer_nginx_launch_nginx: + +Launch Nginx +------------ + +.. code-block:: console + + docker run -itd -p 8000:80 --network vllm_nginx -v ./nginx_conf/:/etc/nginx/conf.d/ --name nginx-lb nginx-lb:latest + +.. _nginxloadbalancer_nginx_verify_nginx: + +Verify That vLLM Servers Are Ready +---------------------------------- + +.. code-block:: console + + docker logs vllm0 | grep Uvicorn + docker logs vllm1 | grep Uvicorn + +Both outputs should look like this: + +.. code-block:: console + + INFO: Uvicorn running on http://0.0.0.0:8000 (Press CTRL+C to quit) diff --git a/docs/source/serving/distributed_serving.rst b/docs/source/serving/distributed_serving.rst index fcb2646df50d3..4d57206e53a05 100644 --- a/docs/source/serving/distributed_serving.rst +++ b/docs/source/serving/distributed_serving.rst @@ -22,7 +22,7 @@ After adding enough GPUs and nodes to hold the model, you can run vLLM first, wh Details for Distributed Inference and Serving ---------------------------------------------- -vLLM supports distributed tensor-parallel inference and serving. Currently, we support `Megatron-LM's tensor parallel algorithm `_. We also support pipeline parallel as a beta feature for online serving. We manage the distributed runtime with either `Ray `_ or python native multiprocessing. Multiprocessing can be used when deploying on a single node, multi-node inferencing currently requires Ray. +vLLM supports distributed tensor-parallel and pipeline-parallel inference and serving. Currently, we support `Megatron-LM's tensor parallel algorithm `_. We manage the distributed runtime with either `Ray `_ or python native multiprocessing. Multiprocessing can be used when deploying on a single node, multi-node inferencing currently requires Ray. Multiprocessing will be used by default when not running in a Ray placement group and if there are sufficient GPUs available on the same node for the configured :code:`tensor_parallel_size`, otherwise Ray will be used. This default can be overridden via the :code:`LLM` class :code:`distributed-executor-backend` argument or :code:`--distributed-executor-backend` API server argument. Set it to :code:`mp` for multiprocessing or :code:`ray` for Ray. It's not required for Ray to be installed for the multiprocessing case. @@ -49,9 +49,6 @@ You can also additionally specify :code:`--pipeline-parallel-size` to enable pip $ --tensor-parallel-size 4 \ $ --pipeline-parallel-size 2 -.. note:: - Pipeline parallel is a beta feature. It is only supported for online serving as well as LLaMa, GPT2, Mixtral, Qwen, Qwen2, and Nemotron style models. - Multi-Node Inference and Serving -------------------------------- diff --git a/docs/source/serving/openai_compatible_server.md b/docs/source/serving/openai_compatible_server.md index e0eba7f09bd65..0b5f75caf2475 100644 --- a/docs/source/serving/openai_compatible_server.md +++ b/docs/source/serving/openai_compatible_server.md @@ -26,13 +26,26 @@ print(completion.choices[0].message) ``` ## API Reference -Please see the [OpenAI API Reference](https://platform.openai.com/docs/api-reference) for more information on the API. We support all parameters except: -- Chat: `tools`, and `tool_choice`. -- Completions: `suffix`. -vLLM also provides experimental support for OpenAI Vision API compatible inference. See more details in [Using VLMs](../models/vlm.rst). +We currently support the following OpenAI APIs: + +- [Completions API](https://platform.openai.com/docs/api-reference/completions) + - *Note: `suffix` parameter is not supported.* +- [Chat Completions API](https://platform.openai.com/docs/api-reference/chat) + - [Vision](https://platform.openai.com/docs/guides/vision)-related parameters are supported; see [Using VLMs](../models/vlm.rst). + - *Note: `image_url.detail` parameter is not supported.* + - We also support `audio_url` content type for audio files. + - Refer to [vllm.entrypoints.chat_utils](https://github.com/vllm-project/vllm/tree/main/vllm/entrypoints/chat_utils.py) for the exact schema. + - *TODO: Support `input_audio` content type as defined [here](https://github.com/openai/openai-python/blob/v1.52.2/src/openai/types/chat/chat_completion_content_part_input_audio_param.py).* + - *Note: `parallel_tool_calls` and `user` parameters are ignored.* +- [Embeddings API](https://platform.openai.com/docs/api-reference/embeddings) + - Instead of `inputs`, you can pass in a list of `messages` (same schema as Chat Completions API), + which will be treated as a single prompt to the model according to its chat template. + - This enables multi-modal inputs to be passed to embedding models, see [Using VLMs](../models/vlm.rst). + - *Note: You should run `vllm serve` with `--task embedding` to ensure that the model is being run in embedding mode.* ## Extra Parameters + vLLM supports a set of parameters that are not part of the OpenAI API. In order to use them, you can pass them as extra parameters in the OpenAI client. Or directly merge them into the JSON payload if you are using HTTP call directly. @@ -49,7 +62,26 @@ completion = client.chat.completions.create( ) ``` -### Extra Parameters for Chat API +### Extra Parameters for Completions API + +The following [sampling parameters (click through to see documentation)](../dev/sampling_params.rst) are supported. + +```{literalinclude} ../../../vllm/entrypoints/openai/protocol.py +:language: python +:start-after: begin-completion-sampling-params +:end-before: end-completion-sampling-params +``` + +The following extra parameters are supported: + +```{literalinclude} ../../../vllm/entrypoints/openai/protocol.py +:language: python +:start-after: begin-completion-extra-params +:end-before: end-completion-extra-params +``` + +### Extra Parameters for Chat Completions API + The following [sampling parameters (click through to see documentation)](../dev/sampling_params.rst) are supported. ```{literalinclude} ../../../vllm/entrypoints/openai/protocol.py @@ -66,21 +98,22 @@ The following extra parameters are supported: :end-before: end-chat-completion-extra-params ``` -### Extra Parameters for Completions API -The following [sampling parameters (click through to see documentation)](../dev/sampling_params.rst) are supported. +### Extra Parameters for Embeddings API + +The following [pooling parameters (click through to see documentation)](../dev/pooling_params.rst) are supported. ```{literalinclude} ../../../vllm/entrypoints/openai/protocol.py :language: python -:start-after: begin-completion-sampling-params -:end-before: end-completion-sampling-params +:start-after: begin-embedding-pooling-params +:end-before: end-embedding-pooling-params ``` The following extra parameters are supported: ```{literalinclude} ../../../vllm/entrypoints/openai/protocol.py :language: python -:start-after: begin-completion-extra-params -:end-before: end-completion-extra-params +:start-after: begin-embedding-extra-params +:end-before: end-embedding-extra-params ``` ## Chat Template @@ -103,6 +136,23 @@ vllm serve --chat-template ./path-to-chat-template.jinja vLLM community provides a set of chat templates for popular models. You can find them in the examples directory [here](https://github.com/vllm-project/vllm/tree/main/examples/) +With the inclusion of multi-modal chat APIs, the OpenAI spec now accepts chat messages in a new format which specifies +both a `type` and a `text` field. An example is provided below: +```python +completion = client.chat.completions.create( + model="NousResearch/Meta-Llama-3-8B-Instruct", + messages=[ + {"role": "user", "content": [{"type": "text", "text": "Classify this sentiment: vLLM is wonderful!"}]} + ] +) +``` +Most chat templates for LLMs expect the `content` to be a `string` but there are some newer models like +`meta-llama/Llama-Guard-3-1B` that expect the content to be parsed with the new OpenAI spec. In order to choose which +format the content needs to be parsed in by vLLM, please use the `--chat-template-text-format` argument to specify +between `string` or `openai`. The default value is `string` and vLLM internally converts both spec formats to match +this, unless explicitly specified. + + ## Command line arguments for the server ```{argparse} @@ -140,7 +190,7 @@ $ vllm serve SOME_MODEL --config config.yaml ``` --- **NOTE** -In case an argument is supplied using command line and the config file, the value from the commandline will take precedence. +In case an argument is supplied simultaneously using command line and the config file, the value from the commandline will take precedence. The order of priorities is `command line > config file values > defaults`. --- @@ -157,8 +207,9 @@ vLLM will use guided decoding to ensure the response matches the tool parameter To enable this feature, you should set the following flags: * `--enable-auto-tool-choice` -- **mandatory** Auto tool choice. tells vLLM that you want to enable the model to generate its own tool calls when it deems appropriate. -* `--tool-call-parser` -- select the tool parser to use - currently either `hermes`, `mistral` or `llama3_json`. Additional tool parsers -will continue to be added in the future. +* `--tool-call-parser` -- select the tool parser to use (listed below). Additional tool parsers +will continue to be added in the future, and also can register your own tool parsers in the `--tool-parser-plugin`. +* `--tool-parser-plugin` -- **optional** tool parser plugin used to register user defined tool parsers into vllm, the registered tool parser name can be specified in `--tool-call-parser`. * `--chat-template` -- **optional** for auto tool choice. the path to the chat template which handles `tool`-role messages and `assistant`-role messages that contain previously generated tool calls. Hermes, Mistral and Llama models have tool-compatible chat templates in their `tokenizer_config.json` files, but you can specify a custom template. This argument can be set to `tool_use` if your model has a tool use-specific chat @@ -167,7 +218,9 @@ from HuggingFace; and you can find an example of this in a `tokenizer_config.jso If your favorite tool-calling model is not supported, please feel free to contribute a parser & tool use chat template! -#### Hermes Models + +#### Hermes Models (`hermes`) + All Nous Research Hermes-series models newer than Hermes 2 Pro should be supported. * `NousResearch/Hermes-2-Pro-*` * `NousResearch/Hermes-2-Theta-*` @@ -179,7 +232,9 @@ step in their creation_. Flags: `--tool-call-parser hermes` -#### Mistral Models + +#### Mistral Models (`mistral`) + Supported models: * `mistralai/Mistral-7B-Instruct-v0.3` (confirmed) * Additional mistral function-calling models are compatible as well. @@ -198,7 +253,9 @@ when tools are provided, that results in much better reliability when working wi Recommended flags: `--tool-call-parser mistral --chat-template examples/tool_chat_template_mistral_parallel.jinja` -#### Llama Models + +#### Llama Models (`llama3_json`) + Supported models: * `meta-llama/Meta-Llama-3.1-8B-Instruct` * `meta-llama/Meta-Llama-3.1-70B-Instruct` @@ -219,3 +276,93 @@ it works better with vLLM. Recommended flags: `--tool-call-parser llama3_json --chat-template examples/tool_chat_template_llama3_json.jinja` +#### InternLM Models (`internlm`) + +Supported models: +* `internlm/internlm2_5-7b-chat` (confirmed) +* Additional internlm2.5 function-calling models are compatible as well + +Known issues: +* Although this implementation also supports InternLM2, the tool call results are not stable when testing with the `internlm/internlm2-chat-7b` model. + +Recommended flags: `--tool-call-parser internlm --chat-template examples/tool_chat_template_internlm2_tool.jinja` + + +#### Jamba Models (`jamba`) +AI21's Jamba-1.5 models are supported. +* `ai21labs/AI21-Jamba-1.5-Mini` +* `ai21labs/AI21-Jamba-1.5-Large` + + +Flags: `--tool-call-parser jamba` + + +#### IBM Granite (`granite-20b-fc`) + +Supported models: +* `ibm-granite/granite-20b-functioncalling` + +Flags: `--tool-call-parser granite-20b-fc --chat-template examples/tool_chat_template_granite_20b_fc.jinja` + +The example chat template deviates slightly from the original on Huggingface, which is not vLLM compatible. It blends function description elements from the Hermes template and follows the same system prompt as "Response Generation" mode from [the paper](https://arxiv.org/abs/2407.00121). Parallel function calls are supported. + + +### How to write a tool parser plugin + +A tool parser plugin is a Python file containing one or more ToolParser implementations. You can write a ToolParser similar to the `Hermes2ProToolParser` in vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py. + +Here is a summary of a plugin file: + +```python + +# import the required packages + +# define a tool parser and register it to vllm +# the name list in register_module can be used +# in --tool-call-parser. you can define as many +# tool parsers as you want here. +@ToolParserManager.register_module(["example"]) +class ExampleToolParser(ToolParser): + def __init__(self, tokenizer: AnyTokenizer): + super().__init__(tokenizer) + + # adjust request. e.g.: set skip special tokens + # to False for tool call output. + def adjust_request( + self, request: ChatCompletionRequest) -> ChatCompletionRequest: + return request + + # implement the tool call parse for stream call + def extract_tool_calls_streaming( + self, + previous_text: str, + current_text: str, + delta_text: str, + previous_token_ids: Sequence[int], + current_token_ids: Sequence[int], + delta_token_ids: Sequence[int], + request: ChatCompletionRequest, + ) -> Union[DeltaMessage, None]: + return delta + + # implement the tool parse for non-stream call + def extract_tool_calls( + self, + model_output: str, + request: ChatCompletionRequest, + ) -> ExtractedToolCallInformation: + return ExtractedToolCallInformation(tools_called=False, + tool_calls=[], + content=text) + + +``` + +Then you can use this plugin in the command line like this. +``` + --enable-auto-tool-choice \ + --tool-parser-plugin + --tool-call-parser example \ + --chat-template \ +``` + diff --git a/docs/source/serving/run_on_sky.rst b/docs/source/serving/run_on_sky.rst index 674b14a879bc3..227e6fd2a7818 100644 --- a/docs/source/serving/run_on_sky.rst +++ b/docs/source/serving/run_on_sky.rst @@ -109,7 +109,7 @@ SkyPilot can scale up the service to multiple service replicas with built-in aut messages: - role: user content: Hello! What is your name? - max_tokens: 1 + max_completion_tokens: 1 .. raw:: html @@ -129,7 +129,7 @@ SkyPilot can scale up the service to multiple service replicas with built-in aut messages: - role: user content: Hello! What is your name? - max_tokens: 1 + max_completion_tokens: 1 resources: accelerators: {L4, A10g, A10, L40, A40, A100, A100-80GB} # We can use cheaper accelerators for 8B model. @@ -255,7 +255,7 @@ This will scale the service up to when the QPS exceeds 2 for each replica. messages: - role: user content: Hello! What is your name? - max_tokens: 1 + max_completion_tokens: 1 resources: accelerators: {L4, A10g, A10, L40, A40, A100, A100-80GB} # We can use cheaper accelerators for 8B model. diff --git a/docs/source/serving/tensorizer.rst b/docs/source/serving/tensorizer.rst index a44696507fb9a..96a93db94871b 100644 --- a/docs/source/serving/tensorizer.rst +++ b/docs/source/serving/tensorizer.rst @@ -9,4 +9,7 @@ shorter Pod startup times and CPU memory usage. Tensor encryption is also suppor For more information on CoreWeave's Tensorizer, please refer to `CoreWeave's Tensorizer documentation `_. For more information on serializing a vLLM model, as well a general usage guide to using Tensorizer with vLLM, see -the `vLLM example script `_. \ No newline at end of file +the `vLLM example script `_. + +.. note:: + Note that to use this feature you will need to install `tensorizer` by running `pip install vllm[tensorizer]`. diff --git a/examples/florence2_inference.py b/examples/florence2_inference.py new file mode 100644 index 0000000000000..b58ac2e1f7ed4 --- /dev/null +++ b/examples/florence2_inference.py @@ -0,0 +1,44 @@ +''' +Demonstrate prompting of text-to-text +encoder/decoder models, specifically Florence-2 +''' +# TODO(Isotr0py): +# Move to offline_inference_vision_language.py after porting vision backbone +from vllm import LLM, SamplingParams + +dtype = "float" + +# Create a Florence-2 encoder/decoder model instance +llm = LLM( + model="microsoft/Florence-2-base", + tokenizer="facebook/bart-base", + dtype=dtype, + trust_remote_code=True, +) + +prompts = [ + "", "", "", + "", "", "", + "", "", "" +] +# Create a sampling params object. +sampling_params = SamplingParams( + temperature=0, + top_p=1.0, + min_tokens=0, + max_tokens=20, +) + +# Generate output tokens from the prompts. The output is a list of +# RequestOutput objects that contain the prompt, generated +# text, and other information. +outputs = llm.generate(prompts, sampling_params) + +# Print the outputs. +for output in outputs: + prompt = output.prompt + encoder_prompt = output.encoder_prompt + generated_text = output.outputs[0].text + print(f"Encoder prompt: {encoder_prompt!r}, " + f"Decoder prompt: {prompt!r}, " + f"Generated text: {generated_text!r}") diff --git a/examples/llm_engine_example.py b/examples/llm_engine_example.py index ca41f32b12b31..60d894aae9692 100644 --- a/examples/llm_engine_example.py +++ b/examples/llm_engine_example.py @@ -18,9 +18,6 @@ def create_test_prompts() -> List[Tuple[str, SamplingParams]]: temperature=0.8, top_p=0.95, frequency_penalty=0.1)), - ("It is only with the heart that one can see rightly", - SamplingParams(n=3, best_of=3, use_beam_search=True, - temperature=0.0)), ] diff --git a/examples/multilora_inference.py b/examples/multilora_inference.py index 6aa25b4689ec8..043220d979c3c 100644 --- a/examples/multilora_inference.py +++ b/examples/multilora_inference.py @@ -43,15 +43,6 @@ def create_test_prompts( max_tokens=128, stop_token_ids=[32003]), LoRARequest("sql-lora", 1, lora_path)), - ( - "[user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_11 (nationality VARCHAR, elector VARCHAR)\n\n question: When Anchero Pantaleone was the elector what is under nationality? [/user] [assistant]", # noqa: E501 - SamplingParams(n=3, - best_of=3, - use_beam_search=True, - temperature=0, - max_tokens=128, - stop_token_ids=[32003]), - LoRARequest("sql-lora", 1, lora_path)), ( "[user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_74 (icao VARCHAR, airport VARCHAR)\n\n question: Name the ICAO for lilongwe international airport [/user] [assistant]", # noqa: E501 SamplingParams(temperature=0.0, @@ -60,15 +51,6 @@ def create_test_prompts( max_tokens=128, stop_token_ids=[32003]), LoRARequest("sql-lora2", 2, lora_path)), - ( - "[user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_11 (nationality VARCHAR, elector VARCHAR)\n\n question: When Anchero Pantaleone was the elector what is under nationality? [/user] [assistant]", # noqa: E501 - SamplingParams(n=3, - best_of=3, - use_beam_search=True, - temperature=0, - max_tokens=128, - stop_token_ids=[32003]), - LoRARequest("sql-lora", 1, lora_path)), ] diff --git a/examples/offline_inference_audio_language.py b/examples/offline_inference_audio_language.py index 1c6ac06123bbb..050b791b62adb 100644 --- a/examples/offline_inference_audio_language.py +++ b/examples/offline_inference_audio_language.py @@ -12,14 +12,15 @@ from vllm.utils import FlexibleArgumentParser audio_assets = [AudioAsset("mary_had_lamb"), AudioAsset("winning_call")] -question_per_audio_count = [ - "What is recited in the audio?", - "What sport and what nursery rhyme are referenced?" -] +question_per_audio_count = { + 0: "What is 1+1?", + 1: "What is recited in the audio?", + 2: "What sport and what nursery rhyme are referenced?" +} # Ultravox 0.3 -def run_ultravox(question, audio_count): +def run_ultravox(question: str, audio_count: int): model_name = "fixie-ai/ultravox-v0_3" tokenizer = AutoTokenizer.from_pretrained(model_name) @@ -33,18 +34,34 @@ def run_ultravox(question, audio_count): tokenize=False, add_generation_prompt=True) + llm = LLM(model=model_name, limit_mm_per_prompt={"audio": audio_count}) + stop_token_ids = None + return llm, prompt, stop_token_ids + + +# Qwen2-Audio +def run_qwen2_audio(question: str, audio_count: int): + model_name = "Qwen/Qwen2-Audio-7B-Instruct" + llm = LLM(model=model_name, - enforce_eager=True, - enable_chunked_prefill=False, - max_model_len=8192, + max_model_len=4096, + max_num_seqs=5, limit_mm_per_prompt={"audio": audio_count}) + + audio_in_prompt = "".join([ + f"Audio {idx+1}: " + f"<|audio_bos|><|AUDIO|><|audio_eos|>\n" for idx in range(audio_count) + ]) + + prompt = ("<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n" + "<|im_start|>user\n" + f"{audio_in_prompt}{question}<|im_end|>\n" + "<|im_start|>assistant\n") stop_token_ids = None return llm, prompt, stop_token_ids -model_example_map = { - "ultravox": run_ultravox, -} +model_example_map = {"ultravox": run_ultravox, "qwen2_audio": run_qwen2_audio} def main(args): @@ -54,7 +71,7 @@ def main(args): audio_count = args.num_audios llm, prompt, stop_token_ids = model_example_map[model]( - question_per_audio_count[audio_count - 1], audio_count) + question_per_audio_count[audio_count], audio_count) # We set temperature to 0.2 so that outputs can be different # even when all prompts are identical when running batch inference. @@ -62,16 +79,17 @@ def main(args): max_tokens=64, stop_token_ids=stop_token_ids) - assert args.num_prompts > 0 - inputs = { - "prompt": prompt, - "multi_modal_data": { + mm_data = {} + if audio_count > 0: + mm_data = { "audio": [ asset.audio_and_sample_rate for asset in audio_assets[:audio_count] ] - }, - } + } + + assert args.num_prompts > 0 + inputs = {"prompt": prompt, "multi_modal_data": mm_data} if args.num_prompts > 1: # Batch inference inputs = [inputs] * args.num_prompts @@ -100,7 +118,7 @@ def main(args): parser.add_argument("--num-audios", type=int, default=1, - choices=[1, 2], + choices=[0, 1, 2], help="Number of audio items per prompt.") args = parser.parse_args() diff --git a/examples/offline_inference_mlpspeculator.py b/examples/offline_inference_mlpspeculator.py index 5dec4a76afb2f..8f0eb65e47f6a 100644 --- a/examples/offline_inference_mlpspeculator.py +++ b/examples/offline_inference_mlpspeculator.py @@ -50,8 +50,6 @@ def time_generation(llm: LLM, prompts: List[str], llm = LLM( model="meta-llama/Llama-2-13b-chat-hf", speculative_model="ibm-fms/llama-13b-accelerator", - # These are currently required for MLPSpeculator decoding - use_v2_block_manager=True, ) print("With speculation") diff --git a/examples/offline_inference_openai.md b/examples/offline_inference_openai.md index ea34374edd3f9..4c64197975534 100644 --- a/examples/offline_inference_openai.md +++ b/examples/offline_inference_openai.md @@ -35,8 +35,8 @@ ``` $ cat openai_example_batch.jsonl -{"custom_id": "request-1", "method": "POST", "url": "/v1/chat/completions", "body": {"model": "meta-llama/Meta-Llama-3-8B-Instruct", "messages": [{"role": "system", "content": "You are a helpful assistant."},{"role": "user", "content": "Hello world!"}],"max_tokens": 1000}} -{"custom_id": "request-2", "method": "POST", "url": "/v1/chat/completions", "body": {"model": "meta-llama/Meta-Llama-3-8B-Instruct", "messages": [{"role": "system", "content": "You are an unhelpful assistant."},{"role": "user", "content": "Hello world!"}],"max_tokens": 1000}} +{"custom_id": "request-1", "method": "POST", "url": "/v1/chat/completions", "body": {"model": "meta-llama/Meta-Llama-3-8B-Instruct", "messages": [{"role": "system", "content": "You are a helpful assistant."},{"role": "user", "content": "Hello world!"}],"max_completion_tokens": 1000}} +{"custom_id": "request-2", "method": "POST", "url": "/v1/chat/completions", "body": {"model": "meta-llama/Meta-Llama-3-8B-Instruct", "messages": [{"role": "system", "content": "You are an unhelpful assistant."},{"role": "user", "content": "Hello world!"}],"max_completion_tokens": 1000}} ``` ### Step 2: Run the batch @@ -94,8 +94,8 @@ To follow along with this example, you can download the example batch, or create ``` $ cat openai_example_batch.jsonl -{"custom_id": "request-1", "method": "POST", "url": "/v1/chat/completions", "body": {"model": "meta-llama/Meta-Llama-3-8B-Instruct", "messages": [{"role": "system", "content": "You are a helpful assistant."},{"role": "user", "content": "Hello world!"}],"max_tokens": 1000}} -{"custom_id": "request-2", "method": "POST", "url": "/v1/chat/completions", "body": {"model": "meta-llama/Meta-Llama-3-8B-Instruct", "messages": [{"role": "system", "content": "You are an unhelpful assistant."},{"role": "user", "content": "Hello world!"}],"max_tokens": 1000}} +{"custom_id": "request-1", "method": "POST", "url": "/v1/chat/completions", "body": {"model": "meta-llama/Meta-Llama-3-8B-Instruct", "messages": [{"role": "system", "content": "You are a helpful assistant."},{"role": "user", "content": "Hello world!"}],"max_completion_tokens": 1000}} +{"custom_id": "request-2", "method": "POST", "url": "/v1/chat/completions", "body": {"model": "meta-llama/Meta-Llama-3-8B-Instruct", "messages": [{"role": "system", "content": "You are an unhelpful assistant."},{"role": "user", "content": "Hello world!"}],"max_completion_tokens": 1000}} ``` Now upload your batch file to your S3 bucket. diff --git a/examples/offline_inference_vision_language.py b/examples/offline_inference_vision_language.py index b94ef537d783f..60cdb186331fe 100644 --- a/examples/offline_inference_vision_language.py +++ b/examples/offline_inference_vision_language.py @@ -1,6 +1,6 @@ """ -This example shows how to use vLLM for running offline inference -with the correct prompt format on vision language models. +This example shows how to use vLLM for running offline inference with +the correct prompt format on vision language models for text generation. For most models, the prompt format should follow corresponding examples on HuggingFace model repository. @@ -18,7 +18,7 @@ # LLaVA-1.5 -def run_llava(question, modality): +def run_llava(question: str, modality: str): assert modality == "image" prompt = f"USER: \n{question}\nASSISTANT:" @@ -29,7 +29,7 @@ def run_llava(question, modality): # LLaVA-1.6/LLaVA-NeXT -def run_llava_next(question, modality): +def run_llava_next(question: str, modality: str): assert modality == "image" prompt = f"[INST] \n{question} [/INST]" @@ -40,7 +40,7 @@ def run_llava_next(question, modality): # LlaVA-NeXT-Video # Currently only support for video input -def run_llava_next_video(question, modality): +def run_llava_next_video(question: str, modality: str): assert modality == "video" prompt = f"USER: