forked from BigDaMa/reds
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_cleaning_tool.py
203 lines (192 loc) · 10.6 KB
/
data_cleaning_tool.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
########################################
# Data Cleaning Tool
# Mohammad Mahdavi
# October 2017
# Big Data Management Group
# TU Berlin
# All Rights Reserved
########################################
########################################
import os
import sys
import json
import re
import string
import subprocess
import random
import pandas
import psycopg2
########################################
########################################
class DataCleaningTool:
"""
The data cleaning tool class.
"""
def __init__(self, data_cleaning_tool_dictionary):
"""
The constructor creates a data cleaning tool.
"""
self.name = data_cleaning_tool_dictionary["name"]
self.configuration = data_cleaning_tool_dictionary["configuration"]
def run(self, d):
"""
This method takes a dataset to run the data cleaning tool on.
"""
outputted_cells = {}
if self.name == "dboost":
dataset_path = "{}-{}.csv".format(d.name, "".join(
random.choice(string.ascii_lowercase + string.digits) for _ in range(10)))
d.write_csv_dataset(dataset_path, d.dataframe)
self.configuration[0] = "--" + self.configuration[0]
command = ["./tools/dBoost/dboost/dboost-stdin.py", "-F",
",", "--statistical", "0.5"] + self.configuration + [dataset_path]
p = subprocess.Popen(command, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.STDOUT)
process_output, process_errors = p.communicate()
tool_results_path = "dboost_output-" + dataset_path
if os.path.exists(tool_results_path):
ocdf = pandas.read_csv(tool_results_path, sep=",", header=None, encoding="utf-8", dtype=str,
keep_default_na=False, low_memory=False).apply(lambda x: x.str.strip())
for i, j in ocdf.get_values().tolist():
if int(i) > 0:
outputted_cells[(int(i) - 1, int(j))] = ""
os.remove(tool_results_path)
os.remove(dataset_path)
elif self.name == "regex":
for attribute, pattern, match_type in self.configuration:
j = d.dataframe.columns.get_loc(attribute)
for i, value in d.dataframe[attribute].iteritems():
if match_type == "OM":
if len(re.findall(pattern, value, re.UNICODE)) > 0:
outputted_cells[(i, j)] = ""
else:
if len(re.findall(pattern, value, re.UNICODE)) == 0:
outputted_cells[(i, j)] = ""
elif self.name == "katara":
dataset_path = "{}-{}.csv".format(d.name, "".join(
random.choice(string.ascii_lowercase + string.digits) for _ in range(10)))
d.write_csv_dataset(dataset_path, d.dataframe)
command = ["java", "-classpath",
"$JAVA_HOME/jre/lib/charsets.jar:$JAVA_HOME/jre/lib/ext/cldrdata.jar:"
"$JAVA_HOME/jre/lib/ext/dnsns.jar:$JAVA_HOME/jre/lib/ext/icedtea-sound.jar:"
"$JAVA_HOME/jre/lib/ext/jaccess.jar:$JAVA_HOME/jre/lib/ext/localedata.jar:"
"$JAVA_HOME/jre/lib/ext/nashorn.jar:$JAVA_HOME/jre/lib/ext/sunec.jar:"
"$JAVA_HOME/jre/lib/ext/sunjce_provider.jar:$JAVA_HOME/jre/lib/ext/sunpkcs11.jar:"
"$JAVA_HOME/jre/lib/ext/zipfs.jar:$JAVA_HOME/jre/lib/jce.jar:$JAVA_HOME/jre/lib/jsse.jar:"
"$JAVA_HOME/jre/lib/management-agent.jar:$JAVA_HOME/jre/lib/resources.jar:$JAVA_HOME/jre/lib/rt.jar:"
"./tools/KATARA/out/test/test:./tools/KATARA/jar_files/commons-lang3-3.7-test-sources.jar:"
"./tools/KATARA/jar_files/commons-lang3-3.7-tests.jar:./tools/KATARA/jar_files/commons-lang3-3.7-sources.jar:"
"./tools/KATARA/jar_files/commons-lang3-3.7.jar:./tools/KATARA/jar_files/idea_rt.jar:"
"./tools/KATARA/jar_files/SimplifiedKATARA.jar:./tools/KATARA/jar_files/commons-lang3-3.7-javadoc.jar:"
"./tools/KATARA/jar_files/super-csv-2.4.0.jar", "simplied.katara.SimplifiedKATARAEntrance"]
knowledge_base_path = os.path.abspath(self.configuration[0])
p = subprocess.Popen(command, stdout=subprocess.PIPE, stdin=subprocess.PIPE, stderr=subprocess.STDOUT)
p.communicate(dataset_path + "\n" + knowledge_base_path + "\n")
tool_results_path = "katara_output-" + dataset_path
if os.path.exists(tool_results_path):
ocdf = pandas.read_csv(tool_results_path, sep=",", header=None, encoding="utf-8", dtype=str,
keep_default_na=False, low_memory=False).apply(lambda x: x.str.strip())
for i, j, v in ocdf.get_values().tolist():
try:
v = v.decode("utf-8")
except UnicodeEncodeError:
pass
outputted_cells[(int(i) - 1, int(j))] = v
os.remove(tool_results_path)
if os.path.exists("crowdclient-runtime.log"):
os.remove("crowdclient-runtime.log")
os.remove(dataset_path)
elif self.name == "nadeef":
# ---------- Prepare Dataset and Clean Plan ----------
dataset_path = "{}_{}.csv".format(d.name, "".join(
random.choice(string.ascii_lowercase + string.digits) for _ in range(10)))
column_index = {a: d.dataframe.columns.get_loc(a) for a in d.dataframe.columns}
temp_dataframe = d.dataframe.copy()
temp_dataframe.rename(columns={a: a + " varchar(20000)" for a in temp_dataframe.columns}, inplace=True)
d.write_csv_dataset(dataset_path, temp_dataframe)
actual_nadeef_parameters = [{"type": "fd", "value": [" | ".join(param)]} for param in self.configuration]
nadeef_clean_plan = {
"source": {
"type": "csv",
"file": [os.path.abspath(dataset_path)]
},
"rule": actual_nadeef_parameters
}
nadeef_clean_plan_path = dataset_path + "-nadeef_clean_plan.json"
nadeef_clean_plan_file = open(nadeef_clean_plan_path, "w")
json.dump(nadeef_clean_plan, nadeef_clean_plan_file)
nadeef_clean_plan_file.close()
# ---------- Connect to the Database ----------
nadeef_configuration_file = open(os.path.join("tools", "NADEEF", "nadeef.conf"), "r")
nadeef_configuration = nadeef_configuration_file.read()
postgres_username = re.findall("database.username = ([\w\d]+)", nadeef_configuration, flags=re.IGNORECASE)[0]
postgres_password = re.findall("database.password = ([\w\d]+)", nadeef_configuration, flags=re.IGNORECASE)[0]
nadeef_configuration_file.close()
connection = psycopg2.connect(dbname="nadeef", host="localhost", user=postgres_username, password=postgres_password)
cursor = connection.cursor()
# ---------- Start Data Cleaning ----------
p = subprocess.Popen(["./nadeef.sh"], cwd=os.path.join("tools", "NADEEF"), stdout=subprocess.PIPE,
stdin=subprocess.PIPE, stderr=subprocess.STDOUT)
process_output, process_errors = p.communicate("load ../../{}\ndetect\nrepair\nexit\n".format(nadeef_clean_plan_path))
# tool_results_path = re.findall("INFO: Export to (.*csv)", process_output)[0]
table_name = "TB_" + dataset_path[:-4].upper()
cursor.execute("""SELECT * from violation WHERE tablename = '{}';""".format(table_name))
violation_results = cursor.fetchall()
for row in violation_results:
i = int(row[3])
j = column_index[row[4]]
outputted_cells[(i - 1, j)] = ""
cursor.execute("""SELECT * from repair WHERE c1_tablename = '{}';""".format(table_name))
repair_results = cursor.fetchall()
for row in repair_results:
i_1 = int(row[2])
j_1 = column_index[row[4]]
v_1 = row[5].decode("utf-8")
i_2 = int(row[7])
j_2 = column_index[row[9]]
v_2 = row[10].decode("utf-8")
# NOTE: Assume the second cell value is the correct one!
outputted_cells[(i_1 - 1, j_1)] = v_2
outputted_cells[(i_2 - 1, j_2)] = v_2
# ---------- Clean up Current results ----------
cursor.execute("""DROP TABLE IF EXISTS {}, audit;""".format(table_name))
cursor.execute("""DELETE FROM violation WHERE tablename = '{}';""".format(table_name))
cursor.execute("""DELETE FROM repair WHERE c1_tablename = '{}';""".format(table_name))
connection.commit()
for f in os.listdir(os.path.join("tools", "NADEEF", "out")):
if os.path.isfile(os.path.join("tools", "NADEEF", "out", f)):
os.remove(os.path.join("tools", "NADEEF", "out", f))
os.remove(nadeef_clean_plan_path)
os.remove(dataset_path)
elif self.name == "fd_checker":
for l_attribute, r_attribute in self.configuration:
jl = d.dataframe.columns.get_loc(l_attribute)
jr = d.dataframe.columns.get_loc(r_attribute)
value_dictionary = {}
for i, row in d.dataframe.iterrows():
if row[l_attribute] not in value_dictionary:
value_dictionary[row[l_attribute]] = {}
value_dictionary[row[l_attribute]][row[r_attribute]] = 1
for i, row in d.dataframe.iterrows():
if len(value_dictionary[row[l_attribute]]) > 1:
outputted_cells[(i, jl)] = ""
outputted_cells[(i, jr)] = ""
else:
sys.stderr.write("I do not know this error detection tool!\n")
return outputted_cells
########################################
########################################
if __name__ == "__main__":
import dataset
dataset_dictionary = {
"name": "toy",
"path": "datasets/dirty.csv"
}
d = dataset.Dataset(dataset_dictionary)
data_cleaning_tool_dictionary = {
"name": "nadeef",
"configuration": [["city", "country"]]
}
t = DataCleaningTool(data_cleaning_tool_dictionary)
print t.run(d)
########################################