forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTHCTensorMathScan.cu
132 lines (117 loc) · 4.9 KB
/
THCTensorMathScan.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
#include <THC/THCTensorMath.h>
#include <THC/THCGeneral.h>
#include <THC/THCBlas.h>
#include <THC/THCTensorCopy.h>
#include <THC/THCApply.cuh>
#include <THC/THCReduce.cuh>
#include <THC/THCNumerics.cuh>
#include <THC/THCTensorMathReduce.cuh>
#include <thrust/scan.h>
#include <thrust/execution_policy.h>
/* Perform an inclusive scan along an outer dimension of a tensor.
*
* - num_orows is the size of the flattened outer dimensions;
* - num_irows is the size of the flattened inner dimensions;
* - row_size is the size of the dimension along which to compute the variance;
*
* The dimensions to the outside and inside of the specified dimension are considered as flattened.
* Thread blocks with the same blockIdx.y process an "outer row" (i.e. an element of the flattened
* outer dimensions, which contains several "inner rows").
* Each thread processes a single inner row at a time.
*/
template<typename T, class BinaryOp>
__global__ void THCTensor_kernel_scanOuterDim(T *tgt_, T *src_,
unsigned num_orows, unsigned num_irows, unsigned row_size,
T init, BinaryOp binary_op)
{
for (unsigned orow = blockIdx.x; orow < num_orows; orow += gridDim.x) {
for (unsigned irow = blockIdx.y * blockDim.x + threadIdx.x; irow < num_irows; irow += gridDim.y * blockDim.x) {
T *src = src_ + orow * row_size * num_irows + irow;
T *tgt = tgt_ + orow * row_size * num_irows + irow;
T acc = init;
for (unsigned col = 0; col < row_size; ++col) {
acc = binary_op(acc, *src);
*tgt = acc;
src += num_irows;
tgt += num_irows;
}
}
}
}
/* Perform an inclusive scan along the innermost dimension of a tensor.
*
* - num_rows is the size of the flattened outer dimensions;
* - row_size is the size of the innermost dimension;
*
* The outer dimensions of the tensor are considered as a single dimension, i.e. the tensor is
* considered as having 'num_rows' rows of size 'row_size'.
* Each thread block processes one or more sets of contiguous rows (processing multiple rows
* per thread block is quicker than processing a single row, especially for short rows).
*/
template<typename T, int num_threads_x, int num_threads_y, class BinaryFunction>
__global__ void THCTensor_kernel_scanInnermostDim(T *tgt_, T *src_,
unsigned num_rows, unsigned row_size,
T init, BinaryFunction binary_op)
{
__shared__ T sbuf[num_threads_y][2 * num_threads_x];
T* row_buf = sbuf[threadIdx.y];
for (unsigned block_row = blockIdx.x * blockDim.y;
block_row < num_rows;
block_row += blockDim.y * gridDim.x) {
unsigned row = block_row + threadIdx.y;
T block_total = init;
T *row_src = src_ + row * row_size;
T *row_tgt = tgt_ + row * row_size;
// Perform scan on one block at a time, keeping track of the total value of
// all blocks processed so far.
for (unsigned block_col = 0; block_col < row_size; block_col += 2 * num_threads_x) {
// Load data into shared memory (two values per thread).
unsigned col1 = block_col + threadIdx.x;
unsigned col2 = block_col + num_threads_x + threadIdx.x;
if (row < num_rows) {
if (col1 < row_size) {
row_buf[threadIdx.x] = row_src[col1];
} else {
row_buf[threadIdx.x] = init;
}
if (col2 < row_size) {
row_buf[num_threads_x + threadIdx.x] = row_src[col2];
} else {
row_buf[num_threads_x + threadIdx.x] = init;
}
// Add the total value of all previous blocks to the first value of this block.
if (threadIdx.x == 0) {
row_buf[0] = binary_op(row_buf[0], block_total);
}
}
__syncthreads();
// Parallel reduction (up-sweep).
for (unsigned s = num_threads_x, d = 1; s >= 1; s >>= 1, d <<= 1) {
if (row < num_rows && threadIdx.x < s) {
unsigned offset = (2 * threadIdx.x + 1) * d - 1;
row_buf[offset + d] = binary_op(row_buf[offset], row_buf[offset + d]);
}
__syncthreads();
}
// Down-sweep.
for (unsigned s = 2, d = num_threads_x / 2; d >= 1; s <<= 1, d >>= 1) {
if (row < num_rows && threadIdx.x < s - 1) {
unsigned offset = 2 * (threadIdx.x + 1) * d - 1;
row_buf[offset + d] = binary_op(row_buf[offset], row_buf[offset + d]);
}
__syncthreads();
}
// Write back to output.
if (row < num_rows) {
if (col1 < row_size) row_tgt[col1] = row_buf[threadIdx.x];
if (col2 < row_size) row_tgt[col2] = row_buf[num_threads_x + threadIdx.x];
}
block_total = row_buf[2 * num_threads_x - 1];
__syncthreads();
}
}
}
#include <THC/generic/THCTensorMathScan.cu>
#include <THC/THCGenerateAllTypes.h>
#include <THC/generic/THCTensorMathScan.cu>
#include <THC/THCGenerateBoolType.h>