forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTHCDeviceUtils.cuh
114 lines (102 loc) · 2.84 KB
/
THCDeviceUtils.cuh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
#ifndef THC_DEVICE_UTILS_INC
#define THC_DEVICE_UTILS_INC
#include <cuda.h>
/* The largest consecutive integer representable in float32 (2^24) */
#define FLOAT32_MAX_CONSECUTIVE_INT 16777216.0f
/**
Computes ceil(a / b)
*/
template <typename T>
__host__ __device__ __forceinline__ T THCCeilDiv(T a, T b) {
return (a + b - 1) / b;
}
/**
Computes ceil(a / b) * b; i.e., rounds up `a` to the next highest
multiple of b
*/
template <typename T>
__host__ __device__ __forceinline__ T THCRoundUp(T a, T b) {
return THCCeilDiv(a, b) * b;
}
/**
* For CC 3.5+, perform a load using __ldg
*/
template <typename T>
__device__ __forceinline__ T doLdg(const T* p) {
#if __CUDA_ARCH__ >= 350
return __ldg(p);
#else
return *p;
#endif
}
__device__ __forceinline__ unsigned int ACTIVE_MASK()
{
#if CUDA_VERSION >= 9000
return __activemask();
#else
// will be ignored anyway
return 0xffffffff;
#endif
}
#if defined(__HIP_PLATFORM_HCC__)
__device__ __forceinline__ unsigned long long int WARP_BALLOT(int predicate)
{
return __ballot(predicate);
}
#else
__device__ __forceinline__ unsigned int WARP_BALLOT(int predicate, unsigned int mask = 0xffffffff)
{
#if CUDA_VERSION >= 9000
return __ballot_sync(mask, predicate);
#else
return __ballot(predicate);
#endif
}
#endif
template <typename T>
__device__ __forceinline__ T WARP_SHFL_XOR(T value, int laneMask, int width = warpSize, unsigned int mask = 0xffffffff)
{
#if CUDA_VERSION >= 9000
return __shfl_xor_sync(mask, value, laneMask, width);
#else
return __shfl_xor(value, laneMask, width);
#endif
}
template <typename T>
__device__ __forceinline__ T WARP_SHFL(T value, int srcLane, int width = warpSize, unsigned int mask = 0xffffffff)
{
#if CUDA_VERSION >= 9000
return __shfl_sync(mask, value, srcLane, width);
#else
return __shfl(value, srcLane, width);
#endif
}
template <typename T>
__device__ __forceinline__ T WARP_SHFL_UP(T value, unsigned int delta, int width = warpSize, unsigned int mask = 0xffffffff)
{
#if CUDA_VERSION >= 9000
return __shfl_up_sync(mask, value, delta, width);
#else
return __shfl_up(value, delta, width);
#endif
}
#ifdef __HIP_PLATFORM_HCC__
__device__ __forceinline__ int64_t WARP_SHFL_DOWN(int64_t value, unsigned int delta, int width = warpSize, unsigned int mask = 0xffffffff)
{
//(HIP doesn't support int64_t). Trick from https://devblogs.nvidia.com/faster-parallel-reductions-kepler/
int2 a = *reinterpret_cast<int2*>(&value);
a.x = __shfl_down(a.x, delta);
a.y = __shfl_down(a.y, delta);
return *reinterpret_cast<int64_t*>(&a);
}
#endif
template <typename T>
__device__ __forceinline__ T WARP_SHFL_DOWN(T value, unsigned int delta, int width = warpSize, unsigned int mask = 0xffffffff)
{
#if CUDA_VERSION >= 9000
return __shfl_down_sync(mask, value, delta, width);
#else
return __shfl_down(value, delta, width);
#endif
}
#endif // THC_DEVICE_UTILS_INC