-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhardware_aware_example.py
146 lines (129 loc) · 4.38 KB
/
hardware_aware_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import gymnasium as gym
from stable_baselines3 import PPO
from stable_baselines3.common.env_util import make_vec_env
from stable_baselines3.common.callbacks import EvalCallback
import numpy as np
from quantum_forge import QuantumForgeEnv, HardwareConstraints
# Register the environment
gym.register(
id='QuantumForge-v0',
entry_point='quantum_forge:QuantumForgeEnv',
)
def create_ibmq_hardware_constraints():
"""Create hardware constraints based on IBMQ architecture"""
return HardwareConstraints(
# Toronto processor connectivity
connectivity_map={
0: [1, 2, 3],
1: [0, 4],
2: [0, 5],
3: [0, 6],
4: [1, 7],
5: [2, 8],
6: [3, 9],
7: [4, 10],
8: [5, 11],
9: [6, 12],
10: [7, 13],
11: [8, 14],
12: [9, 15],
13: [10, 14],
14: [11, 13],
15: [12]
},
# Approximate gate times in ns
gate_times={
'x': 50,
'sx': 50,
'rz': 0,
'cx': 300,
'reset': 1000,
'measure': 1000
},
# Two-qubit gate error rates
error_rates={
(0, 1): 0.01,
(1, 4): 0.015,
(2, 5): 0.012,
# ... other error rates ...
},
max_parallel_gates=8
)
def run_hardware_aware_optimization():
print("\nRunning hardware-aware quantum circuit optimization:")
# Create hardware constraints
hardware_constraints = create_ibmq_hardware_constraints()
# Create vectorized environment with hardware constraints
env = make_vec_env(
'QuantumForge-v0',
n_envs=4,
env_kwargs={
'backend': 'qiskit',
'num_qubits': 5,
'noise_level': 0.01,
'hardware_constraints': hardware_constraints,
'optimization_metric': 'weighted'
}
)
# Create and train the agent with hardware-aware parameters
model = PPO(
"MlpPolicy",
env,
verbose=1,
learning_rate=0.0003,
n_steps=2048,
batch_size=64,
n_epochs=10,
gamma=0.99,
ent_coef=0.01,
policy_kwargs={
"net_arch": [256, 256] # Larger network for hardware-aware optimization
}
)
# Add evaluation callback
eval_callback = EvalCallback(
env,
best_model_save_path='./logs/',
log_path='./logs/',
eval_freq=1000,
deterministic=True,
render=False
)
# Train the agent
model.learn(total_timesteps=100000, callback=eval_callback)
# Evaluate the optimized circuit
obs = env.reset()
circuit_metrics = []
for _ in range(100):
action, _states = model.predict(obs, deterministic=True)
obs, rewards, dones, infos = env.step(action)
# Collect metrics
if not isinstance(infos, dict):
infos = infos[0] # Handle vectorized environment
circuit_metrics.append({
'depth': infos['circuit_depth'],
'two_qubit_gates': infos['two_qubit_gate_count'],
'hardware_violations': infos['hardware_violations'],
'execution_time': infos['estimated_execution_time']
})
if dones.any():
break
# Print optimization results
print("\nOptimization Results:")
print("Final Circuit Metrics:")
final_metrics = circuit_metrics[-1]
print(f"Circuit Depth: {final_metrics['depth']}")
print(f"Two-Qubit Gates: {final_metrics['two_qubit_gates']}")
print(f"Hardware Violations: {final_metrics['hardware_violations']}")
print(f"Estimated Execution Time: {final_metrics['execution_time']} ns")
# Calculate improvement metrics
initial_metrics = circuit_metrics[0]
depth_reduction = (initial_metrics['depth'] - final_metrics['depth']) / initial_metrics['depth'] * 100
gate_reduction = (initial_metrics['two_qubit_gates'] - final_metrics['two_qubit_gates']) / initial_metrics['two_qubit_gates'] * 100
print(f"\nImprovements:")
print(f"Depth Reduction: {depth_reduction:.2f}%")
print(f"Two-Qubit Gate Reduction: {gate_reduction:.2f}%")
env.close()
if __name__ == "__main__":
run_hardware_aware_optimization()
print("\nHardware-aware optimization completed. Check the logs directory for detailed results.")