-
Notifications
You must be signed in to change notification settings - Fork 104
/
Copy pathapp.py
100 lines (86 loc) · 3.49 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
"""
@author: Viet Nguyen <[email protected]>
"""
import os
import random
import string
from flask import Flask, request, render_template
import torch
import torch.nn.functional as F
import csv
import pandas as pd
from nltk.tokenize import sent_tokenize, word_tokenize
import numpy as np
app = Flask(__name__)
APP_ROOT = os.path.dirname(os.path.abspath(__file__))
IMAGES_FOLDER = "flask_images"
rand_str = lambda n: "".join([random.choice(string.ascii_letters + string.digits) for _ in range(n)])
model = None
word2vec = None
max_length_sentences = 0
max_length_word = 0
num_classes = 0
categories = None
@app.route("/")
def home():
return render_template("main.html")
@app.route("/input")
def new_input():
return render_template("input.html")
@app.route("/show", methods=["POST"])
def show():
global model, dictionary, max_length_word, max_length_sentences, num_classes, categories
trained_model = request.files["model"]
if torch.cuda.is_available():
model = torch.load(trained_model)
else:
model = torch.load(trained_model, map_location=lambda storage, loc: storage)
dictionary = pd.read_csv(filepath_or_buffer=request.files["word2vec"], header=None, sep=" ", quoting=csv.QUOTE_NONE,
usecols=[0]).values
dictionary = [word[0] for word in dictionary]
max_length_sentences = model.max_sent_length
max_length_word = model.max_word_length
num_classes = list(model.modules())[-1].out_features
if "classes" in request.files:
df = pd.read_csv(request.files["classes"], header=None)
categories = [item[0] for item in df.values]
return render_template("input.html")
@app.route("/result", methods=["POST"])
def result():
global dictionary, model, max_length_sentences, max_length_word, categories
text = request.form["message"]
document_encode = [
[dictionary.index(word) if word in dictionary else -1 for word in word_tokenize(text=sentences)] for sentences
in sent_tokenize(text=text)]
for sentences in document_encode:
if len(sentences) < max_length_word:
extended_words = [-1 for _ in range(max_length_word - len(sentences))]
sentences.extend(extended_words)
if len(document_encode) < max_length_sentences:
extended_sentences = [[-1 for _ in range(max_length_word)] for _ in
range(max_length_sentences - len(document_encode))]
document_encode.extend(extended_sentences)
document_encode = [sentences[:max_length_word] for sentences in document_encode][
:max_length_sentences]
document_encode = np.stack(arrays=document_encode, axis=0)
document_encode += 1
empty_array = np.zeros_like(document_encode, dtype=np.int64)
input_array = np.stack([document_encode, empty_array], axis=0)
feature = torch.from_numpy(input_array)
if torch.cuda.is_available():
feature = feature.cuda()
model.eval()
with torch.no_grad():
model._init_hidden_state(2)
prediction = model(feature)
prediction = F.softmax(prediction)
max_prob, max_prob_index = torch.max(prediction, dim=-1)
prob = "{:.2f} %".format(float(max_prob[0])*100)
if categories != None:
category = categories[int(max_prob_index[0])]
else:
category = int(max_prob_index[0]) + 1
return render_template("result.html", text=text, value=prob, index=category)
if __name__ == "__main__":
app.secret_key = os.urandom(12)
app.run(host="0.0.0.0", port=4555, debug=True)