forked from shiwentao00/Pocket2Drug
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
executable file
·372 lines (312 loc) · 11.8 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import Tensor
from torch.nn import Sequential, Linear, LeakyReLU, ELU
from torch.nn import ModuleList
from torch_geometric.nn import MessagePassing
from torch_geometric.nn import Set2Set
from torch.nn.utils.rnn import pack_padded_sequence
from torch.nn.functional import softmax
import selfies as sf
from tqdm import tqdm
class Pocket2Drug(torch.nn.Module):
def __init__(self, encoder_config, decoder_config):
super(Pocket2Drug, self).__init__()
# use a graph neural network as encoder
self.embedding_net = JKMCNWMEmbeddingNet(
num_features=encoder_config['num_features'],
dim=encoder_config['dim'],
train_eps=encoder_config['train_eps'],
num_edge_attr=encoder_config['num_edge_attr'],
num_layers=encoder_config['num_layers'],
num_channels=encoder_config['num_channels']
)
# use a recurrent neural network as decoder
self.decoder = RNNDecoder(decoder_config)
def forward(self, data, smiles, lengths):
graph_embedding, _, _ = self.embedding_net(
data.x,
data.edge_index,
data.edge_attr,
data.batch
)
out = self.decoder(graph_embedding, smiles, lengths)
return out
def sample_from_pocket(self, data, num_batches,
batch_size, temperature,
vocab, device):
"""Sample SMILES from the a pocket"""
graph_embedding, _, _ = self.embedding_net(
data.x,
data.edge_index,
data.edge_attr,
data.batch
)
# sample num_batches mini-batches
all_molelcules = []
for _ in tqdm(range(num_batches)):
sampled_ints = self.decoder.conditioned_sample(
graph_embedding,
batch_size,
temperature,
vocab,
device,
max_length=140
)
molecules = []
sampled_ints = sampled_ints.tolist()
for ints in sampled_ints:
molecule = []
for x in ints:
if vocab.int2tocken[x] == '<eos>':
break
else:
molecule.append(vocab.int2tocken[x])
molecules.append("".join(molecule))
# convert SELFIES back to SMILES
if vocab.name == 'selfies':
molecules = [sf.decoder(x) for x in molecules]
all_molelcules.extend(molecules)
return all_molelcules
class RNNDecoder(torch.nn.Module):
def __init__(self, decoder_config):
super(RNNDecoder, self).__init__()
self.embedding_layer = nn.Embedding(
num_embeddings=decoder_config['num_embeddings'],
embedding_dim=decoder_config['embedding_dim'],
padding_idx=decoder_config['num_embeddings'] - 1
)
if decoder_config['which_rnn'] == 'LSTM':
self.name = 'LSTM'
self.rnn = nn.LSTM(
input_size=decoder_config['input_size'],
hidden_size=decoder_config['hidden_size'],
num_layers=decoder_config['num_layers'],
batch_first=True,
dropout=decoder_config['dropout']
)
elif decoder_config['which_rnn'] == 'GRU':
self.name = 'GRU'
self.rnn = nn.GRU(
input_size=decoder_config['input_size'],
hidden_size=decoder_config['hidden_size'],
num_layers=decoder_config['num_layers'],
batch_first=True,
dropout=decoder_config['dropout']
)
else:
raise ValueError(
"which_rnn should be either 'LSTM' or 'GRU'."
)
# softmax output does not include <sos> and <pad>, so
# decrease the num_embeddings by 2
self.linear = nn.Linear(
decoder_config['hidden_size'],
decoder_config['num_embeddings'] - 2
)
def forward(self, graph_embedding, smiles, lengths):
# Use graph_embedding as input to pre-condition
# the RNN.
graph_embedding = graph_embedding.unsqueeze(1)
_, hidden = self.rnn(graph_embedding)
# feed tokens to embedding layer
x = self.embedding_layer(smiles)
# Pack the padded input, note that the lengths are
# decreased by 1 so the last tokens (<eos> or <pad>)
# are not included.
x = pack_padded_sequence(
input=x,
lengths=lengths,
batch_first=True,
enforce_sorted=False
)
# recurrent network, discard (h_n, c_n) in output.
# Tearcher-forcing is used here, so we directly feed
# the whole sequence to model.
x, _ = self.rnn(x, hidden)
# linear layer to generate input of softmax
x = self.linear(x.data)
# return the packed representation for backpropagation,
# the targets will also be packed.
return x
def conditioned_sample(self, graph_embedding,
batch_size, temperature,
vocab, device, max_length):
"""Sample a mini-batch from the RNN which is conditioned on
the graph_embedding"""
# Use graph_embedding as input to pre-condition
# the RNN.
graph_embedding = graph_embedding.unsqueeze(1)
_, hidden = self.rnn(graph_embedding)
# Hidden is of shape [num_layers, 1, dim],
# we need to replicate this tensor to shape [num_layers, batch, dim]
if self.name == 'GRU':
hidden = hidden.repeat(1, batch_size, 1)
elif self.name == 'LSTM':
hidden = (
hidden[0].repeat(1, batch_size, 1),
hidden[1].repeat(1, batch_size, 1)
)
# get integer of "start of sequence"
start_int = vocab.vocab['<sos>']
# create a tensor of shape [batch_size, seq_step=1]
sos = torch.ones(
[batch_size, 1],
dtype=torch.long,
device=device
)
sos = sos * start_int
# sample first output
output = []
x = self.embedding_layer(sos)
x, hidden = self.rnn(x, hidden)
x = self.linear(x)
x = softmax(x / temperature, dim=-1)
x = torch.multinomial(x.squeeze(), 1)
output.append(x)
# a tensor to indicate if the <eos> token is found
# for all data in the mini-batch
finish = torch.zeros(batch_size, dtype=torch.bool).to(device)
# sample until every sequence in the mini-batch
# has <eos> token
for _ in range(max_length):
# forward rnn
x = self.embedding_layer(x)
x, hidden = self.rnn(x, hidden)
x = self.linear(x)
x = softmax(x, dim=-1)
# sample
x = torch.multinomial(x.squeeze(), 1)
output.append(x)
# terminate if <eos> is found for every data
eos_sampled = (x == vocab.vocab['<eos>']).data
finish = torch.logical_or(finish, eos_sampled.squeeze())
if torch.all(finish):
return torch.cat(output, -1)
return torch.cat(output, -1)
class JKMCNWMEmbeddingNet(torch.nn.Module):
"""
Jumping knowledge embedding net inspired by the paper "Representation
Learning on Graphs with Jumping Knowledge Networks".
The GNN layers are now MCNWMConv layer.
"""
def __init__(self, num_features,
dim, train_eps, num_edge_attr,
num_layers, num_channels=1,
layer_aggregate='max'):
super(JKMCNWMEmbeddingNet, self).__init__()
self.num_layers = num_layers
self.layer_aggregate = layer_aggregate
# first layer
self.conv0 = MCNWMConv(
in_dim=num_features,
out_dim=dim,
num_channels=num_channels,
num_edge_attr=num_edge_attr,
train_eps=train_eps
)
self.bn0 = torch.nn.BatchNorm1d(dim)
# rest of the layers
for i in range(1, self.num_layers):
exec('self.conv{} = MCNWMConv(in_dim=dim, out_dim=dim, num_channels={}, num_edge_attr=num_edge_attr, train_eps=train_eps)'.format(
i, num_channels))
exec('self.bn{} = torch.nn.BatchNorm1d(dim)'.format(i))
# read out function
self.set2set = Set2Set(
in_channels=dim, processing_steps=5, num_layers=2)
def forward(self, x, edge_index, edge_attr, batch):
# GNN layers
layer_x = [] # jumping knowledge
for i in range(0, self.num_layers):
conv = getattr(self, 'conv{}'.format(i))
bn = getattr(self, 'bn{}'.format(i))
x = F.leaky_relu(conv(x, edge_index, edge_attr))
x = bn(x)
layer_x.append(x)
# layer aggregation
if self.layer_aggregate == 'max':
x = torch.stack(layer_x, dim=0)
x = torch.max(x, dim=0)[0]
elif self.layer_aggregate == 'mean':
x = torch.stack(layer_x, dim=0)
x = torch.mean(x, dim=0)[0]
# graph readout
#x = self.set2set(x, batch)
return self.set2set(x, batch), x, batch
class MCNWMConv(torch.nn.Module):
"""
Multi-channel neural weighted message module.
"""
def __init__(self,
in_dim,
out_dim,
num_channels,
num_edge_attr=1,
train_eps=True,
eps=0):
super(MCNWMConv, self).__init__()
self.nn = Sequential(
Linear(in_dim * num_channels, out_dim),
LeakyReLU(),
Linear(out_dim, out_dim)
)
self.NMMs = ModuleList()
# add the message passing modules
for _ in range(num_channels):
self.NMMs.append(NWMConv(num_edge_attr, train_eps, eps))
def forward(self, x, edge_index, edge_attr):
# compute the aggregated information for each channel
channels = []
for nmm in self.NMMs:
channels.append(
nmm(x=x, edge_index=edge_index, edge_attr=edge_attr))
# concatenate output of each channel
x = torch.cat(channels, dim=1)
# use the neural network to shrink dimension back
x = self.nn(x)
return x
class NWMConv(MessagePassing):
"""
The neural weighted message (NWM) layer. output of
multiple instances of this will produce multi-channel
output.
"""
def __init__(self, num_edge_attr=1, train_eps=True, eps=0):
super(NWMConv, self).__init__(aggr='add')
self.edge_nn = Sequential(
Linear(num_edge_attr, 8),
LeakyReLU(),
Linear(8, 1),
ELU()
)
if train_eps:
self.eps = torch.nn.Parameter(torch.Tensor([eps]))
else:
self.register_buffer('eps', torch.Tensor([eps]))
# self.reset_parameters()
def forward(self, x, edge_index, edge_attr, size=None):
if isinstance(x, Tensor):
x = (x, x) # x: OptPairTensor
# propagate_type: (x: OptPairTensor)
out = self.propagate(
edge_index,
x=x,
edge_attr=edge_attr,
size=size
)
x_r = x[1]
if x_r is not None:
out += (1 + self.eps) * x_r
return out
def message(self, x_j, edge_attr):
weight = self.edge_nn(edge_attr)
# message size: num_features or dim
# weight size: 1
# all the dimensions in a node masked by one weight
# generated from edge attribute
return x_j * weight
def __repr__(self):
return '{}(edge_nn={})'.format(
self.__class__.__name__, self.edge_nn
)