-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathAbstract.v
62 lines (46 loc) · 1.18 KB
/
Abstract.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
Add LoadPath "coq".
Require Import Patcher.Patch.
Require Import Regress.
Require Import Arith NPeano.
(* Regression tests for abstraction top-level. *)
(* --- Function Abstraction --- *)
Definition expected_abs_1 :=
forall (P : nat -> Prop) (n m p : nat),
n <= m ->
m <= p ->
P (S p) ->
P (p + 1).
Abstract patch4 to expected_abs_1 as actual_abs_1.
Theorem test_abs_1 :
expected_abs_1.
Proof.
exact actual_abs_1.
Qed.
(* --- Argument Abstraction --- *)
(*
* For now, this only handles really obvious cases
*)
Definition expected_abs_2 :=
forall (n0 n p : nat),
((fun m0 => n <= m0) n0) ->
((fun m0 => n <= m0 + 1) n0).
Definition patch_abs_2 n p (H : (fun m0 => n <= m0) p) :=
le_plus_trans n p 1 H.
Abstract patch_abs_2 to expected_abs_2 as actual_abs_2.
Theorem test_abs_2 :
expected_abs_2.
Proof.
exact actual_abs_2.
Qed.
Definition expected_abs_3 :=
forall (n0 n p : nat),
((fun m0 => n <= p) n0) ->
((fun m0 => n <= p + m0) n0).
Definition patch_abs_3 n p (H : (fun m0 => n <= p) 1) :=
le_plus_trans n p 1 H.
Abstract patch_abs_3 to expected_abs_3 as actual_abs_3.
Theorem test_abs_3 :
expected_abs_3.
Proof.
exact actual_abs_3.
Qed.