-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtimer.py
131 lines (113 loc) · 4.56 KB
/
timer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import time
import json
from contextlib import contextmanager
from io import StringIO
import numpy as np
import torch
NS = 1.0 / 1_000_000_000 # 1[ns] in [s]
class Timer:
"""
Timer for PyTorch code
Comes in the form of a contextmanager:
Example:
>>> timer = Timer()
... for i in range(10):
... with timer("expensive operation"):
... x = torch.randn(100)
... print(timer.summary())
"""
def __init__(self, verbosity_level=1, log_fn=None, skip_first=True):
self.verbosity_level = verbosity_level
self.log_fn = log_fn if log_fn is not None else self._default_log_fn
self.skip_first = skip_first
self.reset()
def reset(self):
"""Reset the timer"""
self.totals = {} # Total time per label
self.first_time = {} # First occurrence of a label (start time)
self.last_time = {} # Last occurence of a label (end time)
self.call_counts = {} # Number of times a label occurred
@contextmanager
def __call__(self, label, epoch=-1.0, verbosity=1):
# Don't measure this if the verbosity level is too high
if verbosity > self.verbosity_level:
yield
return
# Measure the time
self._cuda_sync()
# we switch to a lower resolution timer for now
#start = time.time_ns() * NS
start = time.time()
yield
self._cuda_sync()
#end = time.time_ns() * NS
end = time.time()
# Update first and last occurrence of this label
if not label in self.first_time:
self.first_time[label] = start
self.last_time[label] = end
# Update the totals and call counts
if not label in self.totals and self.skip_first:
self.totals[label] = 0.0
del self.first_time[label]
self.call_counts[label] = 0
elif not label in self.totals and not self.skip_first:
self.totals[label] = end - start
self.call_counts[label] = 1
else:
self.totals[label] += end - start
self.call_counts[label] += 1
if self.call_counts[label] > 0:
# We will reduce the probability of logging a timing linearly with the number of times
# we have seen it.
# It will always be recorded in the totals, though
if np.random.rand() < 1 / self.call_counts[label]:
self.log_fn(
"timer", {"epoch": float(epoch), "value": end - start}, {"event": label}
)
def summary(self):
"""
Return a summary in string-form of all the timings recorded so far
"""
with StringIO() as buffer:
print("--- Timer summary -----------------------------------------------", file=buffer)
print(" Event | Count | Average time | Frac.", file=buffer)
for event_label in sorted(self.totals):
total = self.totals[event_label]
count = self.call_counts[event_label]
if count == 0:
continue
avg_duration = total / count
total_runtime = self.last_time[event_label] - self.first_time[event_label]
runtime_percentage = 100 * total / total_runtime
print(
f"- {event_label:30s} | {count:6d} | {avg_duration:11.5f}s | {runtime_percentage:5.1f}%",
file=buffer,
)
print("-----------------------------------------------------------------", file=buffer)
return buffer.getvalue()
def save_summary(self, json_file_path):
data = {}
for event_label in sorted(self.totals):
total = self.totals[event_label]
count = self.call_counts[event_label]
if count == 0:
continue
avg_duration = total / count
data[event_label] = {
"label": event_label,
"average_duration": avg_duration,
"n_events": count,
"total_time": total,
}
with open(json_file_path, "w") as fp:
json.dump(data, fp)
def _cuda_sync(self):
"""Finish all asynchronous GPU computations to get correct timings"""
if torch.cuda.is_available():
torch.cuda.synchronize()
def _default_log_fn(self, _, values, tags):
label = tags["label"]
epoch = values["epoch"]
duration = values["value"]
print(f"Timer: {label:30s} @ {epoch:4.1f} - {duration:8.5f}s")