forked from onnx/onnx-tensorrt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTensorOrWeights.hpp
112 lines (105 loc) · 3.01 KB
/
TensorOrWeights.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
/*
* Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#pragma once
#include "ShapedWeights.hpp"
#include <NvInfer.h>
#include <cassert>
namespace onnx2trt
{
class TensorOrWeights
{
union
{
nvinfer1::ITensor* _tensor;
ShapedWeights _weights;
};
enum
{
NODE_TENSOR,
NODE_WEIGHTS
} _variant;
public:
TensorOrWeights()
: _tensor(nullptr)
, _variant(NODE_TENSOR)
{
}
TensorOrWeights(nvinfer1::ITensor* tensor)
: _tensor(tensor)
, _variant(NODE_TENSOR)
{
}
TensorOrWeights(ShapedWeights const& weights)
: _weights(weights)
, _variant(NODE_WEIGHTS)
{
}
bool is_tensor() const
{
return _variant == NODE_TENSOR;
}
bool is_weights() const
{
return _variant == NODE_WEIGHTS;
}
bool isNullTensor() const
{
return is_tensor() && _tensor == nullptr;
}
nvinfer1::ITensor& tensor()
{
assert(!isNullTensor());
return *_tensor;
}
nvinfer1::ITensor const& tensor() const
{
assert(!isNullTensor());
return *_tensor;
}
ShapedWeights& weights()
{
assert(is_weights());
return _weights;
}
ShapedWeights const& weights() const
{
assert(is_weights());
return _weights;
}
nvinfer1::Dims shape() const
{
return is_tensor() ? _tensor->getDimensions() : _weights.shape;
}
explicit operator bool() const
{
return is_tensor() ? _tensor != nullptr : static_cast<bool>(_weights);
}
bool isInt32() const
{
return is_tensor() ? _tensor->getType() == nvinfer1::DataType::kINT32 : _weights.type == ::ONNX_NAMESPACE::TensorProto_DataType_INT32;
}
bool isBool() const
{
return is_tensor() ? _tensor->getType() == nvinfer1::DataType::kBOOL : _weights.type == ::ONNX_NAMESPACE::TensorProto_DataType_BOOL;
}
};
} // namespace onnx2trt