forked from biobakery/galaxy_lefse
-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_res.py
executable file
·153 lines (137 loc) · 7.59 KB
/
plot_res.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
#!/usr/bin/env python
import os,sys
import matplotlib
matplotlib.use('Agg')
from pylab import *
from lefse import *
import argparse
colors = ['r','g','b','m','c','y','k','w']
def read_params(args):
parser = argparse.ArgumentParser(description='Plot results')
parser.add_argument('input_file', metavar='INPUT_FILE', type=str, help="tab delimited input file")
parser.add_argument('output_file', metavar='OUTPUT_FILE', type=str, help="the file for the output image")
parser.add_argument('--feature_font_size', dest="feature_font_size", type=int, default=7, help="the file for the output image")
parser.add_argument('--format', dest="format", choices=["png","svg","pdf"], default='png', type=str, help="the format for the output file")
parser.add_argument('--dpi',dest="dpi", type=int, default=72)
parser.add_argument('--title',dest="title", type=str, default="")
parser.add_argument('--title_font_size',dest="title_font_size", type=str, default="12")
parser.add_argument('--class_legend_font_size',dest="class_legend_font_size", type=str, default="10")
parser.add_argument('--width',dest="width", type=float, default=7.0 )
parser.add_argument('--height',dest="height", type=float, default=4.0, help="only for vertical histograms")
parser.add_argument('--left_space',dest="ls", type=float, default=0.2 )
parser.add_argument('--right_space',dest="rs", type=float, default=0.1 )
parser.add_argument('--orientation',dest="orientation", type=str, choices=["h","v"], default="h" )
parser.add_argument('--autoscale',dest="autoscale", type=int, choices=[0,1], default=1 )
parser.add_argument('--background_color',dest="back_color", type=str, choices=["k","w"], default="w", help="set the color of the background")
parser.add_argument('--subclades', dest="n_scl", type=int, default=1, help="number of label levels to be dislayed (starting from the leaves, -1 means all the levels, 1 is default )")
parser.add_argument('--max_feature_len', dest="max_feature_len", type=int, default=60, help="Maximum length of feature strings (def 60)")
parser.add_argument('--all_feats', dest="all_feats", type=str, default="")
args = parser.parse_args()
return vars(args)
def read_data(input_file,output_file):
with open(input_file, 'r') as inp:
rows = [line.strip().split()[:-1] for line in inp.readlines() if len(line.strip().split())>3]
classes = list(set([v[2] for v in rows if len(v)>2]))
if len(classes) < 1:
print "No differentially abundant features found in "+input_file
os.system("touch "+output_file)
sys.exit()
data = {}
data['rows'] = rows
data['cls'] = classes
return data
def plot_histo_hor(path,params,data,bcl):
cls2 = []
if params['all_feats'] != "":
cls2 = sorted(params['all_feats'].split(":"))
cls = sorted(data['cls'])
if bcl: data['rows'].sort(key=lambda ab: fabs(float(ab[3]))*(cls.index(ab[2])*2-1))
else:
mmax = max([fabs(float(a)) for a in zip(*data['rows'])[3]])
data['rows'].sort(key=lambda ab: fabs(float(ab[3]))/mmax+(cls.index(ab[2])+1))
pos = arange(len(data['rows']))
head = 0.75
tail = 0.5
ht = head + tail
ints = max(len(pos)*0.2,1.5)
fig = plt.figure(figsize=(params['width'], ints + ht), edgecolor=params['back_color'],facecolor=params['back_color'])
ax = fig.add_subplot(111,frame_on=False,axis_bgcolor=params['back_color'])
ls, rs = params['ls'], 1.0-params['rs']
plt.subplots_adjust(left=ls,right=rs,top=1-head*(1.0-ints/(ints+ht)), bottom=tail*(1.0-ints/(ints+ht)))
fig.canvas.set_window_title('LDA results')
l_align = {'horizontalalignment':'left', 'verticalalignment':'baseline'}
r_align = {'horizontalalignment':'right', 'verticalalignment':'baseline'}
added = []
m = 1 if data['rows'][0][2] == cls[0] else -1
for i,v in enumerate(data['rows']):
indcl = cls.index(v[2])
lab = str(v[2]) if str(v[2]) not in added else ""
added.append(str(v[2]))
col = colors[indcl%len(colors)]
if len(cls2) > 0:
col = colors[cls2.index(v[2])%len(colors)]
vv = fabs(float(v[3])) * (m*(indcl*2-1)) if bcl else fabs(float(v[3]))
ax.barh(pos[i],vv, align='center', color=col, label=lab, height=0.8, edgecolor=params['fore_color'])
mv = max([abs(float(v[3])) for v in data['rows']])
for i,r in enumerate(data['rows']):
indcl = cls.index(data['rows'][i][2])
if params['n_scl'] < 0: rr = r[0]
else: rr = r[0].split(".")[-min(r[0].count("."),params['n_scl'])]
if len(rr) > params['max_feature_len']: rr = rr[:params['max_feature_len']/2-2]+" [..]"+rr[-params['max_feature_len']/2+2:]
if m*(indcl*2-1) < 0 and bcl: ax.text(mv/40.0,float(i)-0.3,rr, l_align, size=params['feature_font_size'],color=params['fore_color'])
else: ax.text(-mv/40.0,float(i)-0.3,rr, r_align, size=params['feature_font_size'],color=params['fore_color'])
ax.set_title(params['title'],size=params['title_font_size'],y=1.0+head*(1.0-ints/(ints+ht))*0.8,color=params['fore_color'])
ax.set_yticks([])
ax.set_xlabel("LDA SCORE (log 10)")
ax.xaxis.grid(True)
xlim = ax.get_xlim()
if params['autoscale']:
ran = arange(0.0001,round(round((abs(xlim[0])+abs(xlim[1]))/10,4)*100,0)/100)
if len(ran) > 1 and len(ran) < 100:
ax.set_xticks(arange(xlim[0],xlim[1]+0.0001,min(xlim[1]+0.0001,round(round((abs(xlim[0])+abs(xlim[1]))/10,4)*100,0)/100)))
ax.set_ylim((pos[0]-1,pos[-1]+1))
leg = ax.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3, ncol=5, borderaxespad=0., frameon=False,prop={'size':params['class_legend_font_size']})
def get_col_attr(x):
return hasattr(x, 'set_color') and not hasattr(x, 'set_facecolor')
for o in leg.findobj(get_col_attr):
o.set_color(params['fore_color'])
for o in ax.findobj(get_col_attr):
o.set_color(params['fore_color'])
plt.savefig(path,format=params['format'],facecolor=params['back_color'],edgecolor=params['fore_color'],dpi=params['dpi'])
plt.close()
def plot_histo_ver(path,params,data):
cls = data['cls']
mmax = max([fabs(float(a)) for a in zip(*data['rows'])[1]])
data['rows'].sort(key=lambda ab: fabs(float(ab[3]))/mmax+(cls.index(ab[2])+1))
pos = arange(len(data['rows']))
if params['n_scl'] < 0: nam = [d[0] for d in data['rows']]
else: nam = [d[0].split(".")[-min(d[0].count("."),params['n_scl'])] for d in data['rows']]
fig = plt.figure(edgecolor=params['back_color'],facecolor=params['back_color'],figsize=(params['width'], params['height']))
ax = fig.add_subplot(111,axis_bgcolor=params['back_color'])
plt.subplots_adjust(top=0.9, left=params['ls'], right=params['rs'], bottom=0.3)
fig.canvas.set_window_title('LDA results')
l_align = {'horizontalalignment':'left', 'verticalalignment':'baseline'}
r_align = {'horizontalalignment':'right', 'verticalalignment':'baseline'}
added = []
for i,v in enumerate(data['rows']):
indcl = data['cls'].index(v[2])
lab = str(v[2]) if str(v[2]) not in added else ""
added.append(str(v[2]))
col = colors[indcl%len(colors)]
vv = fabs(float(v[3]))
ax.bar(pos[i],vv, align='center', color=col, label=lab)
xticks(pos,nam,rotation=-20, ha = 'left',size=params['feature_font_size'])
ax.set_title(params['title'],size=params['title_font_size'])
ax.set_ylabel("LDA SCORE (log 10)")
ax.yaxis.grid(True)
a,b = ax.get_xlim()
dx = float(len(pos))/float((b-a))
ax.set_xlim((0-dx,max(pos)+dx))
plt.savefig(path,format=params['format'],facecolor=params['back_color'],edgecolor=params['fore_color'],dpi=params['dpi'])
plt.close()
if __name__ == '__main__':
params = read_params(sys.argv)
params['fore_color'] = 'w' if params['back_color'] == 'k' else 'k'
data = read_data(params['input_file'],params['output_file'])
if params['orientation'] == 'v': plot_histo_ver(params['output_file'],params,data)
else: plot_histo_hor(params['output_file'],params,data,len(data['cls']) == 2)