-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpoc_sta_online.py
680 lines (651 loc) · 42.2 KB
/
poc_sta_online.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
# -*- coding: utf-8 -*-
"""
Created on Thu Sep 14 15:42:12 2017
@author: wangm
"""
import numpy as np
import robolib as rl
from pylab import *
import pandas as pd
import iolib as il
import time as time
import os as os
zs_funds_fee = il.getZS_Funds_Fee()
zs_funds_discount = il.getZS_Funds_discount()
zs_funds_tdays = il.getZS_Funds_tdays()
users = il.getZS_users()
funds_net = il.getFunds_Net()
funds_profit = il.getFunds_Profit()
startday_str = "2017-07-01"
endday_str = "2017-10-29"
format = "%Y-%m-%d"
strptime, strftime = datetime.datetime.strptime, datetime.datetime.strftime
datelist = rl.dateRange(startday_str, endday_str)
datelist_possible = list(set(funds_net["date"].values.tolist()))
datelist_possible.sort(key=funds_net["date"].values.tolist().index)
datelist_possible_moneyfund = list(set(funds_profit["date"].values.tolist()))
datelist_possible_moneyfund.sort(key=funds_profit["date"].values.tolist().index)
def getMoneyFund_Net(startdate, enddate, ticker):
datelist_mondyfund = rl.dateRange(startdate, enddate)
money_fund_profit = funds_profit[funds_profit["ticker"] == ticker]
total_earn = 0
for date in datelist_mondyfund:
if date.replace("-", "") in money_fund_profit["date"].values.tolist():
total_earn = total_earn + float(
money_fund_profit[money_fund_profit["date"] == date.replace("-", "")].iloc[0]["net"])
return 1 + total_earn / 10000
def poc_sta_combine(user_inside, startday_str_sta, endday_str_sta, poctype, company_file_names_sta, lastdate_str,
symbolstr):
'''
计算不同厂家给出的配置计算收益率和标准差明细
'''
user_poc_sta = user_inside.copy()
# if strptime(endday_str_sta, format) < strptime("2017-11-23", format):
# user_poc_sta = user_poc_sta.ix[:99, :]
ini_money = user_poc_sta.pop("moneyamount")
ini_money = ini_money.map(lambda x: float(x) * 10000)
user_sta = pd.DataFrame(index=user_poc_sta.index)
for company_file in company_file_names_sta:
datelist_sta_temp = rl.dateRange(startday_str_sta, endday_str_sta)
datelist_sta = [w for w in datelist_sta_temp if w.replace("-", "") in datelist_possible]
filenames = ["", "nofee_"]
for filename in filenames:
company_df1 = pd.read_csv(
il.cwd + r"\result\\" + company_file + "_unchanged_result_combine_" + filename + symbolstr + poctype + "_till" + lastdate_str + ".csv")
company_df = company_df1.ix[:, 1:]
if startday_str_sta not in company_df.columns:
company_df.insert(0, startday_str_sta, ini_money)
# company_df = company_df.reindex(range(1, 101))
company_result = company_df.T
company_result_this_period = company_result[company_result.index.isin(datelist_sta_temp)]
company_result_this_period_shift = company_result_this_period.shift(1)
profit_detail_bizhi = company_result_this_period / company_result_this_period_shift
profit_detail_bizhi_profit = company_result_this_period - company_result_this_period_shift
result_des_bizhi = profit_detail_bizhi.describe().T
result_des_bizhi_profit = profit_detail_bizhi_profit.describe().T
user_sta["0" + company_file + "_std_total_" + filename] = result_des_bizhi.pop("std")
user_sta["1" + company_file + "_std_year_" + filename] = user_sta[
"0" + company_file + "_std_total_" + filename] * np.sqrt(
250)
user_sta["2" + company_file + "_year_rate_" + filename] = (
((company_result_this_period.iloc[-1] - company_result_this_period.iloc[0]) /
company_result_this_period.iloc[0]) / (len(datelist_sta_temp) / 365))
# 以下计算最大回撤
maxdown_user_dic = {}
iloc_index = 0
time_cost = 0
for index, row in company_result_this_period.iterrows():
if (iloc_index + 1) < len(company_result_this_period):
iloc_index += 1
start = time.clock()
left_df = company_result_this_period.iloc[iloc_index:]
left_df_describe = left_df.describe()
left_se_max = left_df_describe.T["min"]
down_se = (row - left_se_max) / row
if not bool(maxdown_user_dic):
maxdown_user_dic = {w: down_se[w] for w in down_se.index}
else:
maxdown_user_dic = {w: down_se[w] if down_se[w] > maxdown_user_dic[w] else maxdown_user_dic[w]
for w
in down_se.index}
elapsed = (time.clock() - start)
time_cost += elapsed
if iloc_index % 30 == 0:
print(filename + company_file + " Max Down Time used:" +
str(elapsed) + ", " + str(iloc_index) + "/" + str(len(company_result_this_period)))
print(filename + company_file + " Max Down Time Left Estimated:",
(time_cost / (int(iloc_index))) * len(company_result_this_period) - time_cost)
maxdown_user_dic_positive = {w: maxdown_user_dic[w] if maxdown_user_dic[w] > 0 else 0 for w
in maxdown_user_dic.keys()}
company_maxdown_detial = pd.Series(maxdown_user_dic_positive)
user_sta["3" + company_file + "_maxdown_" + filename] = company_maxdown_detial
user_sta["4" + company_file + "_sharp_ratio_" + filename] = np.log(user_sta[
"2" + company_file + "_year_rate_" + filename] / \
user_sta[
"1" + company_file + "_std_year_" + filename])
# userid_columns = [w for w in range(1, 101)]
user_sta = user_sta.T.sort_index()
# user_sta.columns = userid_columns
user_sta = user_sta.T
user_sta = user_sta.sort_index()
user_poc_sta["userid"] = user_poc_sta["userid"].astype("int64")
user_poc_sta = user_poc_sta.sort_values(by=["userid"])
user_sta.insert(0, "risk_score", user_poc_sta["risk_score"])
user_sta.insert(0, "risk_type", user_poc_sta["risk_type"])
user_sta.insert(0, "userid", user_poc_sta["userid"])
user_sta.set_index("userid")
user_sta = user_sta.sort_values(by=["risk_type", "risk_score"])
return user_sta
def sell_funds_combine(date, user_funds_hold, user_funds_hold_nofee, user_funds_percent):
user_marketcap_value_nofee = user_marketcap_value = 0.0
funds_not_include = []
funds_no_netdata = []
net_temp = 0.0
for holdeticker, holdamount in user_funds_hold.items():
if holdeticker in funds_net["ticker"].values.tolist():
# 如果该基金为开放式公募基金,非货币基金
hold_fund_net = rl.getFundsNetNext_byTickerDate(holdeticker, date.replace("-", ""),
funds_net,
"%Y%m%d")
if hold_fund_net == 0:
hold_fund_net = rl.getFundsNetBefore_byTickerDate(holdeticker,
date.replace("-", ""),
funds_net, "%Y%m%d")
fund_marketcap = float(holdamount) * float(hold_fund_net)
fund_marketcap_nofee = float(user_funds_hold_nofee[holdeticker]) * float(hold_fund_net)
fund_fee_ratio_df = zs_funds_fee[zs_funds_fee['ticker'] == holdeticker]
if fund_fee_ratio_df.empty:
# 找不到费率,说明这个基金不在我行的代销列表中
funds_not_include.append(holdeticker)
else:
fund_fee_ratio = fund_fee_ratio_df.iloc[0]["sellratio"]
fund_fee = float(fund_fee_ratio) * float(fund_marketcap)
# 计算基金赎回费用
fund_marketcap = fund_marketcap - fund_fee
net_temp = net_temp + hold_fund_net * user_funds_percent[holdeticker]
elif holdeticker in funds_profit["ticker"].values.tolist():
# 如果该基金是货币基金,则没有手续费,直接计算市值
hold_fund_net = rl.getFundsNetNext_byTickerDate(holdeticker, date.replace("-", ""),
funds_profit,
"%Y%m%d")
if hold_fund_net == 0:
hold_fund_net = rl.getFundsNetBefore_byTickerDate(holdeticker,
date.replace("-", ""),
funds_net, "%Y%m%d")
fund_marketcap = holdamount + (holdamount / 10000) * hold_fund_net
fund_marketcap_nofee = user_funds_hold_nofee[holdeticker] + (user_funds_hold_nofee[
holdeticker] / 10000) * hold_fund_net
moneyfund_net = getMoneyFund_Net(startday_str, date, holdeticker)
net_temp = net_temp + moneyfund_net * user_funds_percent[holdeticker]
else:
funds_no_netdata.append(holdeticker)
user_marketcap_value = user_marketcap_value + fund_marketcap
user_marketcap_value_nofee = user_marketcap_value_nofee + fund_marketcap_nofee
return user_marketcap_value, user_marketcap_value_nofee, net_temp, funds_not_include, funds_no_netdata
def compute_funds(date, user_funds_hold, user_funds_hold_nofee, user_funds_percent):
user_marketcap_value_nofee = user_marketcap_value = 0.0
funds_not_include = []
funds_no_netdata = []
user_funds_hold_temp = {}
user_funds_hold_temp_nofee = {}
net_temp = 0.0
for holdeticker, holdamount in user_funds_hold.items():
if holdeticker in funds_net["ticker"].values.tolist():
# 如果该基金为开放式公募基金,非货币基金
hold_fund_net = rl.getFundsNetBefore_byTickerDate(holdeticker,
date.replace("-", ""),
funds_net, "%Y%m%d")
if hold_fund_net == 0.0:
hold_fund_net = rl.getFundsNetNext_byTickerDate(holdeticker,
date.replace("-", ""),
funds_net, "%Y%m%d")
fund_marketcap = holdamount * hold_fund_net
fund_marketcap_nofee = float(user_funds_hold_nofee[holdeticker]) * hold_fund_net
net_temp = net_temp + hold_fund_net * user_funds_percent[holdeticker]
elif holdeticker in funds_profit["ticker"].values.tolist():
# 如果该基金是货币基金
hold_fund_net = rl.getFundsNetBefore_byTickerDate(holdeticker,
date.replace("-", ""),
funds_profit, "%Y%m%d")
if hold_fund_net == 0.0:
hold_fund_net = rl.getFundsNetNext_byTickerDate(holdeticker,
date.replace("-", ""),
funds_net, "%Y%m%d")
fund_marketcap = holdamount + (holdamount / 10000) * hold_fund_net
fund_marketcap_nofee = float(user_funds_hold_nofee[holdeticker]) + (float(
user_funds_hold_nofee[holdeticker]) / 10000) * hold_fund_net
moneyfund_net = getMoneyFund_Net(startday_str, date, holdeticker)
net_temp = net_temp + moneyfund_net * user_funds_percent[holdeticker]
user_funds_hold_temp[holdeticker] = fund_marketcap
user_funds_hold_temp_nofee[holdeticker] = fund_marketcap_nofee
# 新建一个货币基金编号和市值的临时字典保存更新后的货币基金持有市值
else:
funds_no_netdata.append(holdeticker)
user_marketcap_value = user_marketcap_value + fund_marketcap
user_marketcap_value_nofee = user_marketcap_value_nofee + fund_marketcap_nofee
for moneyfundticker, moneyfundamount in user_funds_hold_temp.items():
if moneyfundticker in user_funds_hold.keys():
user_funds_hold[moneyfundticker] = moneyfundamount
# 以上for循环更新user_funds_hold中持有货币基金的市值
for moneyfundticker, moneyfundamount in user_funds_hold_temp_nofee.items():
if moneyfundticker in user_funds_hold_nofee.keys():
user_funds_hold_nofee[moneyfundticker] = moneyfundamount
# 以上for循环更新user_funds_hold中持有货币基金的市值
return user_funds_hold, user_funds_hold_nofee, user_marketcap_value, user_marketcap_value_nofee, net_temp, funds_not_include, funds_no_netdata
def buy_funds_combine(user_combination_date, date, usermoney, usermoney_nofee, poctype):
user_funds_percent = {}
user_funds_hold = {}
user_funds_hold_nofee = {}
funds_not_include = []
funds_no_netdata = []
net_temp = 0.0
fund_fee_total = 0.0
leftusermoney = usermoney
leftusermoney_nofee = usermoney_nofee
for index2, row2 in user_combination_date.iterrows():
# 对该公司对该用户组合在当天日期内的每个配置情况循环买入基金
fund_ticker = row2["ticker"]
# 基金编号
fund_percent = float(row2["percent"])
# 基金比例
user_funds_percent[fund_ticker] = fund_percent
if fund_ticker in funds_net["ticker"].values.tolist():
# 如果该基金为开放式公募基金,非货币基金
fund_net = rl.getFundsNetNext_byTickerDate(fund_ticker, date.replace("-", ""),
funds_net,
"%Y%m%d")
if fund_net == 0.0:
# 如果返回基金净值为0,证明当前日期以及当前日期之后没有基金净值数据,则作为该基金持有量为0处理
user_funds_hold[fund_ticker] = 0.0
else:
# 如果返回基金净值不为0,则可以按照返回的基金净值进行基金买入
if fund_ticker in user_funds_hold.keys():
user_funds_hold[fund_ticker] = user_funds_hold[fund_ticker] + (
float(usermoney) * float(fund_percent)) / fund_net
user_funds_hold_nofee[fund_ticker] = user_funds_hold_nofee[fund_ticker] + (
float(usermoney_nofee) * float(fund_percent)) / fund_net
else:
user_funds_hold[fund_ticker] = (float(usermoney) * float(fund_percent)) / fund_net
user_funds_hold_nofee[fund_ticker] = (float(usermoney_nofee) * float(fund_percent)) / fund_net
# 计算买入基金的数量
fund_fee_ratio_df = zs_funds_fee[zs_funds_fee['ticker'] == fund_ticker]
if poctype == "bs":
# 如果计算的为博时基金的情况
fund_fee_ratio = 0.012
fund_fee_base = float(usermoney) * fund_percent
discount = 0.4
fund_fee = fund_fee_base * discount * fund_fee_ratio
leftusermoney = leftusermoney - (float(usermoney) * fund_percent) - fund_fee
fund_fee_total = fund_fee_total + fund_fee
leftusermoney_nofee = leftusermoney_nofee - (float(usermoney_nofee) * fund_percent)
else:
if fund_fee_ratio_df.empty:
# 找不到费率,说明这个基金不在我行的代销列表中
user_funds_hold[fund_ticker] = 0.0
user_funds_hold_nofee[fund_ticker] = 0.0
funds_not_include.append(fund_ticker)
else:
fund_fee_ratio = fund_fee_ratio_df.iloc[0]["buyratio"]
fund_fee_discount_df = zs_funds_discount[
zs_funds_discount['ticker'] == fund_ticker]
fund_fee_discount_df = fund_fee_discount_df[
fund_fee_discount_df["tname"] == "产品申购"]
fund_fee_discount_df = fund_fee_discount_df[
fund_fee_discount_df["ttype"] == "网银"]
fund_fee_base = float(usermoney) * fund_percent
fund_fee = 0
# print(fund_ticker)
for index3, row3 in fund_fee_discount_df.iterrows():
tmin = float(row3["tmin"])
tmax = float(row3["tmax"])
discount = float(row3["discount"])
if fund_fee_base < tmax:
fund_fee = fund_fee + (fund_fee_base - tmin) * discount * fund_fee_ratio
break
else:
fund_fee = fund_fee + (tmax - tmin) * discount * fund_fee_ratio
# 以上为计算买入的申购费用
leftusermoney = leftusermoney - (float(usermoney) * fund_percent) - fund_fee
# 从剩余的现金中减去申购手续费和基金费用
leftusermoney_nofee = leftusermoney_nofee - (float(usermoney_nofee) * fund_percent)
fund_fee_total = fund_fee_total + fund_fee
net_temp = net_temp + fund_net * fund_percent
elif fund_ticker in funds_profit["ticker"].values.tolist():
# 如果该基金是货币基金,则没有手续费,直接记录初次买入的金额
fund_net = rl.getFundsNetNext_byTickerDate(fund_ticker, date.replace("-", ""),
funds_profit,
"%Y%m%d")
if fund_net == 0:
user_funds_hold[fund_ticker] = 0
else:
if fund_ticker in user_funds_hold.keys():
user_funds_hold[fund_ticker] = user_funds_hold[fund_ticker] + float(usermoney) * float(fund_percent)
user_funds_hold_nofee[fund_ticker] = user_funds_hold_nofee[fund_ticker] + float(
usermoney_nofee) * float(fund_percent)
else:
user_funds_hold[fund_ticker] = float(usermoney) * float(fund_percent)
user_funds_hold_nofee[fund_ticker] = float(usermoney_nofee) * float(fund_percent)
# 记录买入金额
leftusermoney = float(leftusermoney) - (float(usermoney) * float(fund_percent))
# 从剩余现金中减去买货币基金所花费的数额
leftusermoney_nofee = float(leftusermoney_nofee) - (float(usermoney_nofee) * float(fund_percent))
moneyfund_net = getMoneyFund_Net(startday_str, date, fund_ticker)
net_temp = net_temp + fund_percent * moneyfund_net
else:
funds_no_netdata.append(fund_ticker)
return user_funds_hold, user_funds_hold_nofee, leftusermoney, leftusermoney_nofee, user_funds_percent, net_temp, fund_fee_total, funds_not_include, funds_no_netdata
def buyorsell_funds_combine(date, user_funds_hold, user_funds_hold_nofee, user_funds_percent, change_amount, poctype):
usermoney = usermoney_nofee = np.abs(change_amount)
user_combination_date = pd.DataFrame(user_funds_percent, index=[0]).T
user_combination_date = user_combination_date.reset_index()
user_combination_date.columns = ["ticker", "percent"]
if change_amount > 0:
user_funds_hold_change, user_funds_hold_nofee_change, leftusermoney, leftusermoney_nofee, _, net_temp, fund_fee_total, funds_not_include_temp, funds_no_netdata_temp = buy_funds_combine(
user_combination_date, date, usermoney, usermoney_nofee, poctype)
return_user_funds_hold = {}
return_user_funds_hold_nofee = {}
return_leftusermoney = leftusermoney
return_leftusermoney_nofee = leftusermoney_nofee
for key, value in user_funds_hold.items():
return_user_funds_hold[key] = user_funds_hold[key] + user_funds_hold_change[key]
return_user_funds_hold_nofee[key] = user_funds_hold_nofee[key] + user_funds_hold_nofee_change[key]
else:
user_funds_hold, user_funds_hold_nofee, user_marketcap_value, user_marketcap_value_nofee, net_temp, funds_not_include_temp, funds_no_netdata_temp = compute_funds(
date, user_funds_hold, user_funds_hold_nofee, user_funds_percent)
sell_ratio = np.abs(change_amount) / user_marketcap_value
return_user_funds_hold = {}
return_user_funds_hold_nofee = {}
sell_user_funds_hold = {}
sell_user_funds_hold_nofee = {}
for key, value in user_funds_hold.items():
sell_user_funds_hold[key] = value * sell_ratio
return_user_funds_hold[key] = value * (1 - sell_ratio)
sell_user_funds_hold_nofee[key] = user_funds_hold_nofee[key] * sell_ratio
return_user_funds_hold_nofee[key] = user_funds_hold_nofee[key] * (1 - sell_ratio)
user_marketcap_value, user_marketcap_value_nofee, net_temp, funds_not_include_temp, funds_no_netdata_temp = sell_funds_combine(
date, sell_user_funds_hold, sell_user_funds_hold_nofee, user_funds_percent)
return_leftusermoney = user_marketcap_value
return_leftusermoney_nofee = user_marketcap_value_nofee
return return_user_funds_hold, return_user_funds_hold_nofee, return_leftusermoney, return_leftusermoney_nofee
def get_updated_users_by_company(formaldate_str, oldusers_df, company_file_names_list, poctype, symbolstr):
'''
读入最新的用户信息表,其中用户的资金数目会更新为最新的资产市值
'''
users_info_dic = {}
user_change_df_dic, user_changeamount_dic = il.getZS_users_change()
for company_file in company_file_names_list:
user_df = oldusers_df.copy()
try:
company_df1 = pd.read_csv(
il.cwd + r"\result\\" + company_file + "_result_combine_" + symbolstr + poctype + "_till" + formaldate_str + ".csv")
company_nofee_df1 = pd.read_csv(
il.cwd + r"\result\\" + company_file + "_result_combine_nofee_" + symbolstr + poctype + "_till" + formaldate_str + ".csv")
company_df = company_df1.ix[:, 1:]
company_nofee_df = company_nofee_df1.ix[:, 1:]
user_df = user_df.sort_values(by=["userid"])
current_money_list = company_df.iloc[:, -1:].T.values.tolist()
current_monye_nofee_list = company_nofee_df.iloc[:, -1:].T.values.tolist()
current_money_se = pd.Series(
{w: current_money_list[0][w - 1] for w in range(1, len(current_money_list[0]) + 1)})
current_money_nofee_se = pd.Series(
{w: current_monye_nofee_list[0][w - 1] for w in range(1, len(current_monye_nofee_list[0]) + 1)})
user_df['userid'] = user_df['userid'].astype('int')
user_df = user_df.set_index("userid")
user_df.insert(0, "nofee_amount", current_money_nofee_se)
user_df.insert(0, "fee_amount", current_money_se)
user_df = user_df.ix[:len(company_df), :]
for key, value in user_change_df_dic.items():
change_date = key
user_change_df = value
for index, row in user_change_df.iterrows():
add_user_id = int(row["userid"])
add_user_amount = float(row["moneyamount"]) * 10000
add_user_dic = {"moneyamount": float(row["moneyamount"]), "nofee_amount": add_user_amount,
"fee_amount": add_user_amount, "risk_score": float(row["risk_score"]),
"risk_type": row["risk_type"]}
if add_user_id > 100 and add_user_id in user_df.index:
user_df.loc[add_user_id, "nofee_amount"] = add_user_amount
user_df.loc[add_user_id, "fee_amount"] = add_user_amount
user_df.loc[add_user_id, "moneyamount"] = float(row["moneyamount"])
elif add_user_id > 100 and add_user_id not in user_df.index:
user_df = user_df.append(pd.DataFrame(add_user_dic, index=[add_user_id]), ignore_index=False)
user_df = user_df.sort_index()
users_info_dic[company_file] = user_df
except:
pass
user_money = oldusers_df["moneyamount"].copy()
user_df.insert(0, "nofee_amount", user_money.astype('float') * 10000)
user_df.insert(0, "fee_amount", user_money.astype('float') * 10000)
user_df['userid'] = user_df['userid'].astype('int')
user_df = user_df.set_index("userid")
user_df = user_df.sort_index()
users_info_dic[company_file] = user_df
return users_info_dic
def company_detail_concat(formaldate_str, company_file_names_list, poctype, lastdate_str, symbolstr,
flag_former="total_", flag_later="unchanged_"):
'''
连接所有用户的每日市值表格
'''
company_return_yuan = pd.DataFrame()
for company_file in company_file_names_list:
try:
company_df1 = pd.read_csv(
il.cwd + r"\result\\" + company_file + "_" + flag_former + "result_combine_" + symbolstr + poctype + "_till" + formaldate_str + ".csv")
company_df2 = pd.read_csv(
il.cwd + r"\result\\" + company_file + "_" + flag_later + "result_combine_" + symbolstr + poctype + "_" + lastdate_str + ".csv")
company_return_yuan[company_file] = pd.Series(company_df2.iloc[:, -1].values.tolist()) - pd.Series(
company_df2.iloc[:, 1].values.tolist())
company_df1 = company_df1.ix[:, 1:]
company_df2 = company_df2.ix[:, 1:]
company_df = pd.concat([company_df1, company_df2], axis=1)
company_nofee_df1 = pd.read_csv(
il.cwd + r"\result\\" + company_file + "_" + flag_former + "result_combine_nofee_" + symbolstr + poctype + "_till" + formaldate_str + ".csv")
company_nofee_df2 = pd.read_csv(
il.cwd + r"\result\\" + company_file + "_" + flag_later + "result_combine_nofee_" + symbolstr + poctype + "_" + lastdate_str + ".csv")
company_return_yuan[company_file + "_nofee"] = pd.Series(
company_nofee_df2.iloc[:, -1].values.tolist()) - pd.Series(
company_nofee_df2.iloc[:, 1].values.tolist())
company_nofee_df1 = company_nofee_df1.ix[:, 1:]
company_nofee_df2 = company_nofee_df2.ix[:, 1:]
company_nofee_df = pd.concat([company_nofee_df1, company_nofee_df2], axis=1)
except:
print("Wrong concat files.")
company_df.to_csv(
il.cwd + r"\result\\" + company_file + "_" + flag_later + "result_combine_" + symbolstr + poctype + "_till" + lastdate_str + ".csv")
print("File saved:",
il.cwd + r"\result\\" + company_file + "_" + flag_later + "result_combine_" + symbolstr + poctype + "_till" + lastdate_str + ".csv")
company_nofee_df.to_csv(
il.cwd + r"\result\\" + company_file + "_" + flag_later + "result_combine_nofee_" + symbolstr + poctype + "_till" + lastdate_str + ".csv")
print("File saved:",
il.cwd + r"\result\\" + company_file + "_" + flag_later + "result_combine_nofee_" + symbolstr + poctype + "_till" + lastdate_str + ".csv")
userid_columns = [w for w in range(1, 151)]
company_return_yuan = company_return_yuan.T
company_return_yuan.columns = userid_columns
company_return_yuan = company_return_yuan.T
company_return_yuan.to_csv(
il.cwd + r"\result\\result_combine_return_value_" + symbolstr + poctype + "_till" + lastdate_str + ".csv")
print("File saved:",
il.cwd + r"\result\\result_combine_return_value_" + symbolstr + poctype + "_till" + lastdate_str + ".csv")
return True
def poc_detail_compute_combine(company_file_names_poc, poctype, users_inside_dic, datelist_in_poc_compute, symbolstr):
'''
计算不同厂家给出的配置相应的每日净值,并输出为文件,计算时先对天循环,再对日期循环
'''
user_change_df_dic, user_changeamount_dic = il.getZS_users_change()
for company_file in company_file_names_poc:
# 对每一个公司给出的配置情况循环
company_df = il.getZS_Company_combination(il.cwd + r"\history_data\\" + poctype + "_" + company_file + ".csv")
company_detial = pd.DataFrame()
company_detial_nofee = pd.DataFrame()
company_detial_net = pd.DataFrame()
funds_not_include = []
funds_no_netdata = []
time_cost = 0.0
count = 0
users_inside = users_inside_dic[company_file]
# 2,101-103,67,111,112
users_test = pd.concat(
[users_inside[1:2],users_inside[106:107], users_inside[86:87]], axis=0)
for index, row in users_inside.iterrows():
count += 1
start = time.clock()
print("计算第" + str(count) + "/" + str(len(users_inside)) + "个用户.")
# 对每一个用户循环
userid = str(index)
leftusermoney_nofee = usermoney_nofee = row["nofee_amount"]
leftusermoney = usermoney = row["fee_amount"]
user_combination = company_df[company_df['userid'] == userid]
user_funds_hold = {}
user_funds_hold_nofee = {}
user_funds_percent = {}
user_marketcap = {}
user_marketcap_nofee = {}
user_net = {}
last_change_date = ""
last_market_value = 0
for date in datelist_in_poc_compute:
# print("当前回测日期为" + str(date) + ".")
# 对回测时间段内的每一个日期循环
if date in user_changeamount_dic.keys():
user_changeamount_inside_dic = user_changeamount_dic[date]
change_amount = user_changeamount_inside_dic[int(userid)]
if change_amount == 0:
pass
else:
if not bool(user_funds_hold):
usermoney = usermoney + change_amount * 10000
usermoney_nofee = usermoney_nofee + change_amount * 10000
else:
########## 需要计算真实调仓下的情况是把下面的语句注释掉##########
change_amount = 0
########## 需要计算真实调仓下的情况是把上面的语句注释掉##########
user_funds_hold, user_funds_hold_nofee, _, _ = buyorsell_funds_combine(
date, user_funds_hold, user_funds_hold_nofee, user_funds_percent, change_amount * 10000,
poctype)
user_combination_date_dic, user_combination_date, buy_date = rl.getUserCombinationByDate(date,
user_combination)
if user_combination_date.empty and int(userid) > 100 and strptime(date, format) >= strptime(
list(user_changeamount_dic.keys())[0], format):
user_same_risk_df = users_inside[users_inside["risk_type"] == row["risk_type"]]
user_same_risk_id = user_same_risk_df[:1].index[0]
user_combination_same_risk_df = company_df[company_df['userid'] == str(user_same_risk_id)]
user_combination_date_dic, user_combination_date, buy_date = rl.getUserCombinationByDate(date,
user_combination_same_risk_df)
else:
pass
if user_combination_date.empty:
print(
"User " + userid + " and/or users with same risk have no combination on " + date + " or before.")
else:
if not bool(user_funds_hold):
# 如果用户持仓情况为空仓,则买入基金
user_funds_hold, user_funds_hold_nofee, leftusermoney, leftusermoney_nofee, user_funds_percent, net_temp, fund_fee_total, funds_not_include_temp, funds_no_netdata_temp = buy_funds_combine(
user_combination_date, date, usermoney, usermoney_nofee, poctype)
funds_not_include.extend(funds_not_include_temp)
funds_no_netdata.extend(funds_no_netdata_temp)
if date.replace("-", "") not in datelist_possible:
pass
else:
user_marketcap[date] = float(usermoney) - fund_fee_total
user_marketcap_nofee[date] = usermoney_nofee
last_market_value = float(usermoney) - fund_fee_total
if net_temp > 0:
user_net[date] = net_temp
else:
# 如果用户已有持仓,则根据组合查看是否调仓
if date not in user_combination["date"].values.tolist():
if date.replace("-", "") not in datelist_possible:
# 非交易日跳过
pass
else:
# 交易日,根据持仓计算
user_funds_hold, user_funds_hold_nofee, user_marketcap_value, user_marketcap_value_nofee, net_temp, funds_not_include_temp, funds_no_netdata_temp = compute_funds(
date, user_funds_hold, user_funds_hold_nofee, user_funds_percent)
funds_not_include.extend(funds_not_include_temp)
funds_no_netdata.extend(funds_no_netdata_temp)
user_marketcap[date] = user_marketcap_value + leftusermoney
user_marketcap_nofee[date] = user_marketcap_value_nofee + leftusermoney_nofee
last_market_value = user_marketcap_value + leftusermoney
if net_temp > 0:
user_net[date] = net_temp
else:
user_marketcap_value, user_marketcap_value_nofee, net_temp, funds_not_include_temp, funds_no_netdata_temp = sell_funds_combine(
date, user_funds_hold, user_funds_hold_nofee, user_funds_percent)
funds_not_include.extend(funds_not_include_temp)
funds_no_netdata.extend(funds_no_netdata_temp)
user_funds_hold.clear()
user_funds_hold_nofee.clear()
leftusermoney = usermoney = user_marketcap_value + leftusermoney
leftusermoney_nofee = usermoney_nofee = user_marketcap_value_nofee + leftusermoney_nofee
# 以上为卖出基金,以下为买入基金
user_funds_hold, user_funds_hold_nofee, leftusermoney, leftusermoney_nofee, user_funds_percent, net_temp, fund_fee_total, funds_not_include_temp, funds_no_netdata_temp = buy_funds_combine(
user_combination_date, date, usermoney, usermoney_nofee, poctype)
funds_not_include.extend(funds_not_include_temp)
funds_no_netdata.extend(funds_no_netdata_temp)
if date.replace("-", "") not in datelist_possible:
# 非交易日跳过
pass
else:
user_marketcap[date] = usermoney - fund_fee_total
user_marketcap_nofee[date] = usermoney_nofee
last_market_value = usermoney - fund_fee_total
if net_temp > 0:
user_net[date] = net_temp
company_detial = company_detial.append(user_marketcap, ignore_index=True)
company_detial_nofee = company_detial_nofee.append(user_marketcap_nofee, ignore_index=True)
company_detial_net = company_detial_net.append(user_net, ignore_index=True)
elapsed = (time.clock() - start)
time_cost += elapsed
print("Time used (sec):", elapsed)
print("Time Left Estimated (min):", str(((time_cost / (int(count))) * len(users_inside) - time_cost) / 60))
lastdate_str = datelist_in_poc_compute[-1]
company_detial.to_csv(
il.cwd + r"\result\\" + company_file + "_unchanged_result_combine_" + symbolstr + poctype + "_" + lastdate_str + ".csv")
print("File saved:",
il.cwd + r"\result\\" + company_file + "_unchanged_result_combine_" + symbolstr + poctype + "_" + lastdate_str + ".csv")
company_detial_nofee.to_csv(
il.cwd + r"\result\\" + company_file + "_unchanged_result_combine_nofee_" + symbolstr + poctype + "_" + lastdate_str + ".csv")
print("File saved:",
il.cwd + r"\result\\" + company_file + "_unchanged_result_combine_nofee_" + symbolstr + poctype + "_" + lastdate_str + ".csv")
company_detial_net.to_csv(
il.cwd + r"\result\\" + company_file + "_unchanged_result_combine_net_" + symbolstr + poctype + "_" + lastdate_str + ".csv")
print("File saved:",
il.cwd + r"\result\\" + company_file + "_unchanged_result_combine_net_" + symbolstr + poctype + "_" + lastdate_str + ".csv")
file = open(
il.cwd + r"\result\\" + company_file + "_unchanged_result_combine_reg_" + symbolstr + poctype + "_" + lastdate_str + ".txt",
'w')
file.write("funds_not_include" + '\r\n')
file.write(str(set(funds_not_include)) + '\r\n')
file.write("funds_no_netdata" + '\r\n')
file.write(str(set(funds_no_netdata)) + '\r\n')
file.close()
print("File saved:",
il.cwd + r"\result\\" + company_file + "_unchanged_result_combine_reg_" + poctype + "_" + lastdate_str + ".txt")
if __name__ == '__main__':
cwd = os.getcwd()
poctype_out_list = ["zs"]
symbolstr = "total_"
flag_str = "unchanged_"
users_inside = il.getZS_users_complete(cwd + r"\history_data\zs_user_change.csv")
for poctype_out in poctype_out_list:
# company_file_names_poc = ["zsmk"]
# company_file_names_poc = ["varindex-90-minpercnet0.05-change_return0.05-indexcombine2-total"]
company_file_names_poc = ["zsmk", "varindex-90-minpercnet0.05-change_return0.05-indexcombine2-total", "xj",
"betago", "sz", "kmrd"]
# company_file_names_poc = ["sz"]
# date_pairs_total = [("2017-07-01", "2017-07-31"), ("2017-08-01", "2017-08-31"), ("2017-09-01", "2017-09-30"),
# ("2017-10-01", "2017-10-31"), ("2017-07-01", "2017-10-31")]
# date_pairs = [("2017-10-30", "2017-11-05"),("2017-11-06", "2017-11-12"),("2017-11-13", "2017-11-19"),("2017-11-20", "2017-11-26"), ("2017-11-27", "2017-12-03"), ("2017-12-04", "2017-12-10")]
date_pairs = [("2017-07-01", "2018-01-14")]
startdate_poc = "2017-11-19"
enddate_poc = "2018-01-14"
# users_dic_real = get_updated_users_by_company(startdate_poc, users_inside, company_file_names_poc, poctype_out,
# symbolstr=symbolstr)
# datelist_in_poc_compute = rl.dateRange_endinclude(startdate_poc, enddate_poc)
# poc_detail_compute_combine(company_file_names_poc, poctype_out, users_dic_real, datelist_in_poc_compute,
# symbolstr)
# company_detail_concat(startdate_poc, company_file_names_poc, poctype_out, enddate_poc, symbolstr, "", flag_str)
for startday_str_sta, endday_str_sta in date_pairs:
if strptime(endday_str_sta, format) >= strptime("2017-11-23", format):
usersta1 = poc_sta_combine(users_inside.ix[:99, :], startday_str_sta, endday_str_sta, poctype_out,
company_file_names_poc,
enddate_poc, symbolstr)
if strptime(startday_str_sta, format) >= strptime("2017-11-27", format):
usersta2 = poc_sta_combine(users_inside.ix[100:, :], startday_str_sta, endday_str_sta, poctype_out,
company_file_names_poc,
enddate_poc, symbolstr)
else:
usersta2 = poc_sta_combine(users_inside.ix[100:, :], "2017-11-27", endday_str_sta, poctype_out,
company_file_names_poc,
enddate_poc, symbolstr)
user_sta = pd.concat([usersta1, usersta2], axis=0)
else:
user_sta = poc_sta_combine(users_inside.ix[:99, :], startday_str_sta, endday_str_sta, poctype_out,
company_file_names_poc,
enddate_poc, symbolstr)
company_join_str = "_".join(company_file_names_poc)
user_sta.to_excel(
il.cwd + r"\result\\" + startday_str_sta + "_" + endday_str_sta + "_sta_combine_" + poctype_out + "_" + flag_str + company_join_str + ".xls")
print("File saved:",
il.cwd + r"\result\\" + startday_str_sta + "_" + endday_str_sta + "_sta_combine_" + poctype_out + "_" + flag_str + company_join_str + ".xls")
print(user_sta)