-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathLec_2_13_Termination.hs
113 lines (89 loc) · 3.28 KB
/
Lec_2_13_Termination.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
module Lec_2_13_Termination where
-- | Termination Example 1 --------------------------------------------------------------
{-@ data List [lsize] @-}
data List a = Nil | Cons a (List a)
{-@ measure lsize @-}
{-@ lsize :: List a -> Nat @-}
lsize :: List a -> Int
lsize Nil = 0
lsize (Cons x xs) = 1 + lsize xs
lsize1 :: List a -> Int
lsize1 Nil = 0
lsize1 (Cons _ Nil) = 1
lsize1 (Cons x (Cons y zs)) = 2 + lsize1 zs
{-
1. LH does not check `silly` as it is not structural recursion
2. You can define a "metric" by
- declaring `lsize1` as a `measure` and
- typing `silly :: l:List a -> Int / [lsize1 l]
- associating `lsize` as the "default" size for `List` as `data List [lsize]`
-}
{-@ silly :: List a -> Int @-}
silly :: List a -> Int
silly Nil = 0
silly (Cons _ Nil) = 1
silly (Cons x (Cons y zs)) = 1 + silly (Cons x zs)
--------------------------------------------------------
-- | Termination Example 1 --------------------------------------------------------------
data AExp
= N Int
| V String
| Plus AExp AExp
{-@ measure asize @-}
{-@ asize :: AExp -> {v:Int | v >= 1} @-}
asize :: AExp -> Int
asize (N _) = 1
asize (V _) = 1
asize (Plus a1 a2) = 1 + asize a1 + asize a2
{-
merge_exps is not structural recursion
1. you can declare `asize` as a `measure`
2. you can use a "lexicographic" metric `[asize a2, asize a1]`
3. you can be clever and write a single `[(2 * asize a2) + asize a1)]
-}
{-@ merge_exps:: a1:AExp -> a2:AExp -> AExp / [(2 * asize a2) + asize a1] @-}
merge_exps:: AExp -> AExp -> AExp
merge_exps (N n1) (N n2) = N (n1 + n2)
merge_exps (V x1) (V x2) = Plus (V x1) (Plus (V x2) (N 0))
merge_exps (V x) (N n) = Plus (V x) (N n)
merge_exps (N n) (V x) = Plus (V x) (N n)
merge_exps (N n) a2 = merge_exps a2 (N n)
merge_exps (V x) a2 = merge_exps a2 (V x)
merge_exps (Plus (V x) a1') a2 = Plus (V x) (merge_exps a1' a2)
merge_exps (Plus _ _) _ = N 0
-- | Termination Example 2 --------------------------------------------------------------
data Pred
= Var Int -- ^ x, y, z variables
| Not Pred -- ^ ~ p negation
| Or Pred Pred -- ^ p1 \/ p2 disjunction
| And Pred Pred -- ^ p1 /\ p2 conjunction
{-@ data Pred [psize] @-}
{-@ measure psize @-}
{-@ psize :: Pred -> {v:Int | v >= 0} @-}
psize :: Pred -> Int
psize (Var _) = 0
psize (Not p) = 1 + psize p
psize (Or p q) = 2 + psize p + psize q
psize (And p q) = 2 + psize p + psize q
{-@ type NNF = {v:Pred | isNNF v} @-}
{-@ measure isNNF @-}
isNNF :: Pred -> Bool
isNNF (Var _) = True
isNNF (And p q) = isNNF p && isNNF q
isNNF (Or p q) = isNNF p && isNNF q
isNNF (Not p) = isVar p
{-@ measure isVar @-}
isVar :: Pred -> Bool
isVar (Var _) = True
isVar _ = False
{-
nnf is not structural recursion
1. you can declare `psize` as a `measure`
2. you can specify a metric in the type `nnf :: p:Pred -> Pred / [psize p]`
3. you can declare `psize` as a default size `data Pred [psize]`
-}
{-@ nnf :: Pred -> Pred @-}
nnf :: Pred -> Pred
nnf (Not (And p1 p2)) = Or (nnf (Not p1)) (nnf (Not p2))
nnf (Not (Or p1 p2)) = And (nnf (Not p1)) (nnf (Not p2))
nnf p = p