-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_tpu_main.py
135 lines (115 loc) · 5 KB
/
model_tpu_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
r"""Creates and runs `Estimator` for object detection model on TPUs.
This uses the TPUEstimator API to define and run a model in TRAIN/EVAL modes.
"""
# pylint: enable=line-too-long
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl import flags
import tensorflow as tf
from tensorflow.contrib.tpu.python.tpu import tpu_config
from object_detection import model_hparams
from object_detection import model_lib
tf.flags.DEFINE_bool('use_tpu', True, 'Use TPUs rather than plain CPUs')
# Cloud TPU Cluster Resolvers
flags.DEFINE_string(
'gcp_project',
default=None,
help='Project name for the Cloud TPU-enabled project. If not specified, we '
'will attempt to automatically detect the GCE project from metadata.')
flags.DEFINE_string(
'tpu_zone',
default=None,
help='GCE zone where the Cloud TPU is located in. If not specified, we '
'will attempt to automatically detect the GCE project from metadata.')
flags.DEFINE_string(
'tpu_name',
default=None,
help='Name of the Cloud TPU for Cluster Resolvers.')
flags.DEFINE_integer('num_shards', 8, 'Number of shards (TPU cores).')
flags.DEFINE_integer('iterations_per_loop', 100,
'Number of iterations per TPU training loop.')
# For mode=train_and_eval, evaluation occurs after training is finished.
# Note: independently of steps_per_checkpoint, estimator will save the most
# recent checkpoint every 10 minutes by default for train_and_eval
flags.DEFINE_string('mode', 'train',
'Mode to run: train, eval')
flags.DEFINE_integer('train_batch_size', None, 'Batch size for training. If '
'this is not provided, batch size is read from training '
'config.')
flags.DEFINE_string(
'hparams_overrides', None, 'Comma-separated list of '
'hyperparameters to override defaults.')
flags.DEFINE_boolean('eval_training_data', False,
'If training data should be evaluated for this job.')
flags.DEFINE_string(
'model_dir', None, 'Path to output model directory '
'where event and checkpoint files will be written.')
flags.DEFINE_string('pipeline_config_path', None, 'Path to pipeline config '
'file.')
flags.DEFINE_integer('num_train_steps', None, 'Number of train steps.')
flags.DEFINE_integer('num_eval_steps', None, 'Number of train steps.')
FLAGS = tf.flags.FLAGS
def main(unused_argv):
flags.mark_flag_as_required('model_dir')
flags.mark_flag_as_required('pipeline_config_path')
tpu_cluster_resolver = (
tf.contrib.cluster_resolver.python.training.TPUClusterResolver(
tpu_names=[FLAGS.tpu_name],
zone=FLAGS.tpu_zone,
project=FLAGS.gcp_project))
tpu_grpc_url = tpu_cluster_resolver.get_master()
config = tpu_config.RunConfig(
master=tpu_grpc_url,
evaluation_master=tpu_grpc_url,
model_dir=FLAGS.model_dir,
tpu_config=tpu_config.TPUConfig(
iterations_per_loop=FLAGS.iterations_per_loop,
num_shards=FLAGS.num_shards))
kwargs = {}
if FLAGS.train_batch_size:
kwargs['batch_size'] = FLAGS.train_batch_size
train_and_eval_dict = model_lib.create_estimator_and_inputs(
run_config=config,
hparams=model_hparams.create_hparams(FLAGS.hparams_overrides),
pipeline_config_path=FLAGS.pipeline_config_path,
train_steps=FLAGS.num_train_steps,
eval_steps=FLAGS.num_eval_steps,
use_tpu_estimator=True,
use_tpu=FLAGS.use_tpu,
num_shards=FLAGS.num_shards,
**kwargs)
estimator = train_and_eval_dict['estimator']
train_input_fn = train_and_eval_dict['train_input_fn']
eval_input_fn = train_and_eval_dict['eval_input_fn']
eval_on_train_input_fn = train_and_eval_dict['eval_on_train_input_fn']
train_steps = train_and_eval_dict['train_steps']
eval_steps = train_and_eval_dict['eval_steps']
if FLAGS.mode == 'train':
estimator.train(input_fn=train_input_fn, max_steps=train_steps)
# Continuously evaluating.
if FLAGS.mode == 'eval':
if FLAGS.eval_training_data:
name = 'training_data'
input_fn = eval_on_train_input_fn
else:
name = 'validation_data'
input_fn = eval_input_fn
model_lib.continuous_eval(estimator, FLAGS.model_dir, input_fn, eval_steps,
train_steps, name)
if __name__ == '__main__':
tf.app.run()