-
Notifications
You must be signed in to change notification settings - Fork 70
/
Copy pathyolo.py
383 lines (306 loc) · 12.3 KB
/
yolo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
##########################################################################
# Example : performs YOLO (v3) object detection from a video file
# specified on the command line (e.g. python FILE.py video_file) or from an
# attached web camera
# Author : Toby Breckon, [email protected]
# Copyright (c) 2019 Toby Breckon, Durham University, UK
# License : LGPL - http://www.gnu.org/licenses/lgpl.html
# Implements the You Only Look Once (YOLO) object detection architecture in:
# Redmon, J., & Farhadi, A. (2018). Yolov3: An incremental improvement.
# arXiv:1804.02767. - https://pjreddie.com/media/files/papers/YOLOv3.pdf
# This code: significant portions based in part on the tutorial and
# example available at:
# https://www.learnopencv.com/deep-learning-based-object-detection-using-yolov3-with-opencv-python-c/
# https://github.com/spmallick/learnopencv/blob/master/ObjectDetection-YOLO/object_detection_yolo.py
# under LICENSE:
# https://github.com/spmallick/learnopencv/blob/master/ObjectDetection-YOLO/LICENSE
# To use first download the following files:
# https://pjreddie.com/media/files/yolov3.weights
# https://github.com/pjreddie/darknet/blob/master/cfg/yolov3.cfg?raw=true
# https://github.com/pjreddie/darknet/blob/master/data/coco.names?raw=true
##########################################################################
import cv2
import argparse
import sys
import math
import numpy as np
##########################################################################
keep_processing = True
# parse command line arguments for camera ID or video file, and YOLO files
parser = argparse.ArgumentParser(
description='Perform ' +
sys.argv[0] +
' example operation on incoming camera/video image')
parser.add_argument(
"-c",
"--camera_to_use",
type=int,
help="specify camera to use",
default=0)
parser.add_argument(
"-r",
"--rescale",
type=float,
help="rescale image by this factor",
default=1.0)
parser.add_argument(
"-s",
"--set_resolution",
type=int,
nargs=2,
help='override default camera resolution as H W')
parser.add_argument(
"-fs",
"--fullscreen",
action='store_true',
help="run in full screen mode")
parser.add_argument(
"-use",
"--target",
type=str,
choices=['cpu', 'gpu', 'opencl'],
help="select computational backend",
default='gpu')
parser.add_argument(
'video_file',
metavar='video_file',
type=str,
nargs='?',
help='specify optional video file')
parser.add_argument(
"-cl",
"--class_file",
type=str,
help="list of classes",
default='coco.names')
parser.add_argument(
"-cf",
"--config_file",
type=str,
help="network config",
default='yolov3.cfg')
parser.add_argument(
"-w",
"--weights_file",
type=str,
help="network weights",
default='yolov3.weights')
args = parser.parse_args()
##########################################################################
# dummy on trackbar callback function
def on_trackbar(val):
return
#####################################################################
# Draw the predicted bounding box on the specified image
# image: image detection performed on
# class_name: string name of detected object_detection
# left, top, right, bottom: rectangle parameters for detection
# colour: to draw detection rectangle in
def drawPred(image, class_name, confidence, left, top, right, bottom, colour):
# Draw a bounding box.
cv2.rectangle(image, (left, top), (right, bottom), colour, 3)
# construct label
label = '%s:%.2f' % (class_name, confidence)
# Display the label at the top of the bounding box
labelSize, baseLine = cv2.getTextSize(
label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
top = max(top, labelSize[1])
cv2.rectangle(
image,
(left,
top -
round(
1.5 *
labelSize[1])),
(left +
round(
1.5 *
labelSize[0]),
top +
baseLine),
(255,
255,
255),
cv2.FILLED)
cv2.putText(image, label, (left, top),
cv2.FONT_HERSHEY_SIMPLEX, 0.75, (0, 0, 0), 1)
#####################################################################
# Remove the bounding boxes with low confidence using non-maxima suppression
# image: image detection performed on
# results: output from YOLO CNN network
# threshold_confidence: threshold on keeping detection
# threshold_nms: threshold used in non maximum suppression
def postprocess(image, results, threshold_confidence, threshold_nms):
frameHeight = image.shape[0]
frameWidth = image.shape[1]
# Scan through all the bounding boxes output from the network and..
# 1. keep only the ones with high confidence scores.
# 2. assign the box class label as the class with the highest score.
# 3. construct a list of bounding boxes, class labels and confidence scores
classIds = []
confidences = []
boxes = []
for result in results:
for detection in result:
scores = detection[5:]
classId = np.argmax(scores)
confidence = scores[classId]
if confidence > threshold_confidence:
center_x = int(detection[0] * frameWidth)
center_y = int(detection[1] * frameHeight)
width = int(detection[2] * frameWidth)
height = int(detection[3] * frameHeight)
left = int(center_x - width / 2)
top = int(center_y - height / 2)
classIds.append(classId)
confidences.append(float(confidence))
boxes.append([left, top, width, height])
# Perform non maximum suppression to eliminate redundant overlapping boxes
# with lower confidences
classIds_nms = []
confidences_nms = []
boxes_nms = []
indices = cv2.dnn.NMSBoxes(
boxes,
confidences,
threshold_confidence,
threshold_nms)
for i in indices:
classIds_nms.append(classIds[i])
confidences_nms.append(confidences[i])
boxes_nms.append(boxes[i])
# return post processed lists of classIds, confidences and bounding boxes
return (classIds_nms, confidences_nms, boxes_nms)
##########################################################################
# Get the names of the output layers of the CNN network
# net : an OpenCV DNN module network object
def getOutputsNames(net):
# Get the names of all the layers in the network
layersNames = net.getLayerNames()
# Get the names of the output layers, i.e. the layers with unconnected
# outputs
return [layersNames[i - 1] for i in net.getUnconnectedOutLayers()]
##########################################################################
# define video capture object
try:
# to use a non-buffered camera stream (via a separate thread)
if not (args.video_file):
import camera_stream
cap = camera_stream.CameraVideoStream()
else:
cap = cv2.VideoCapture() # not needed for video files
except BaseException:
# if not then just use OpenCV default
print("INFO: camera_stream class not found - camera input may be buffered")
cap = cv2.VideoCapture()
##########################################################################
# init YOLO CNN object detection model
confThreshold = 0.5 # Confidence threshold
nmsThreshold = 0.4 # Non-maximum suppression threshold
inpWidth = 416 # Width of network's input image
inpHeight = 416 # Height of network's input image
# Load names of classes from file
classesFile = args.class_file
classes = None
with open(classesFile, 'rt') as f:
classes = f.read().rstrip('\n').split('\n')
# load configuration and weight files for the model and load the network
# using them
net = cv2.dnn.readNetFromDarknet(args.config_file, args.weights_file)
output_layer_names = getOutputsNames(net)
# set up compute target as one of [GPU, OpenCL, CPU]
if (args.target == 'gpu'):
net.setPreferableBackend(cv2.dnn.DNN_BACKEND_CUDA)
net.setPreferableTarget(cv2.dnn.DNN_TARGET_CUDA)
elif (args.target == 'opencl'):
net.setPreferableBackend(cv2.dnn.DNN_BACKEND_DEFAULT)
net.setPreferableTarget(cv2.dnn.DNN_TARGET_OPENCL)
else:
net.setPreferableBackend(cv2.dnn.DNN_BACKEND_DEFAULT)
net.setPreferableTarget(cv2.dnn.DNN_TARGET_CPU)
##########################################################################
# define display window name + trackbar
window_name = 'YOLOv3 object detection: ' + args.weights_file
cv2.namedWindow(window_name, cv2.WINDOW_NORMAL)
trackbarName = 'reporting confidence > (x 0.01)'
cv2.createTrackbar(trackbarName, window_name, 70, 100, on_trackbar)
##########################################################################
# if command line arguments are provided try to read video_name
# otherwise default to capture from attached camera
if (((args.video_file) and (cap.open(str(args.video_file))))
or (cap.open(args.camera_to_use))):
# create window by name (as resizable)
cv2.namedWindow(window_name, cv2.WINDOW_NORMAL)
# override default camera resolution
if (args.set_resolution is not None):
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, args.set_resolution[1])
cap.set(cv2.CAP_PROP_FRAME_WIDTH, args.set_resolution[0])
while (keep_processing):
# start a timer (to see how long processing and display takes)
start_t = cv2.getTickCount()
# if camera /video file successfully open then read frame
if (cap.isOpened):
ret, frame = cap.read()
# when we reach the end of the video (file) exit cleanly
if (ret == 0):
keep_processing = False
continue
# rescale if specified
if (args.rescale != 1.0):
frame = cv2.resize(
frame, (0, 0), fx=args.rescale, fy=args.rescale)
# create a 4D tensor (OpenCV 'blob') from image frame (pixels scaled
# 0->1, image resized)
tensor = cv2.dnn.blobFromImage(
frame, 1 / 255, (inpWidth, inpHeight), [0, 0, 0], 1, crop=False)
# set the input to the CNN network
net.setInput(tensor)
# runs forward inference to get output of the final output layers
results = net.forward(output_layer_names)
# remove the bounding boxes with low confidence
confThreshold = cv2.getTrackbarPos(trackbarName, window_name) / 100
classIDs, confidences, boxes = postprocess(
frame, results, confThreshold, nmsThreshold)
# draw resulting detections on image
for detected_object in range(0, len(boxes)):
box = boxes[detected_object]
left = box[0]
top = box[1]
width = box[2]
height = box[3]
drawPred(frame,
classes[classIDs[detected_object]],
confidences[detected_object],
left,
top,
left + width,
top + height,
(255,
178,
50))
# stop the timer and convert to ms. (to see how long processing takes
stop_t = ((cv2.getTickCount() - start_t) /
cv2.getTickFrequency()) * 1000
# Display efficiency information
label = ('Inference time: %.2f ms' % stop_t) + \
(' (Framerate: %.2f fps' % (1000 / stop_t)) + ')'
cv2.putText(frame, label, (0, 15),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255))
# display image
cv2.imshow(window_name, frame)
cv2.setWindowProperty(window_name, cv2.WND_PROP_FULLSCREEN,
cv2.WINDOW_FULLSCREEN & args.fullscreen)
# start the event loop + detect specific key strokes
# wait 40ms or less depending on processing time taken (i.e. 1000ms /
# 25 fps = 40 ms)
key = cv2.waitKey(max(2, 40 - int(math.ceil(stop_t)))) & 0xFF
# if user presses "x" then exit / press "f" for fullscreen display
if (key == ord('x')):
keep_processing = False
elif (key == ord('f')):
args.fullscreen = not (args.fullscreen)
# close all windows
cv2.destroyAllWindows()
else:
print("No video file specified or camera connected.")
##########################################################################