-
Notifications
You must be signed in to change notification settings - Fork 70
/
Copy pathmog-background-subtraction.py
179 lines (128 loc) · 5.57 KB
/
mog-background-subtraction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
#####################################################################
# Example : perform GMM based foreground/background subtraction from a video
# file specified on the command line (e.g. python FILE.py video_file) or from
# an attached web camera
# Author : Toby Breckon, [email protected]
# Copyright (c) 2015-18 Toby Breckon, Engineering & Computer Science,
# Durham University, UK
# License : LGPL - http://www.gnu.org/licenses/lgpl.html
#####################################################################
import cv2
import argparse
import sys
#####################################################################
keep_processing = True
# parse command line arguments for camera ID or video file
parser = argparse.ArgumentParser(
description='Perform ' +
sys.argv[0] +
' example operation on incoming camera/video image')
parser.add_argument(
"-c",
"--camera_to_use",
type=int,
help="specify camera to use",
default=0)
parser.add_argument(
"-r",
"--rescale",
type=float,
help="rescale image by this factor",
default=1.0)
parser.add_argument(
'video_file',
metavar='video_file',
type=str,
nargs='?',
help='specify optional video file')
args = parser.parse_args()
#####################################################################
# define video capture object
try:
# to use a non-buffered camera stream (via a separate thread)
if not (args.video_file):
import camera_stream
cap = camera_stream.CameraVideoStream()
else:
cap = cv2.VideoCapture() # not needed for video files
except BaseException:
# if not then just use OpenCV default
print("INFO: camera_stream class not found - camera input may be buffered")
cap = cv2.VideoCapture()
# check versions to work around this bug in OpenCV 3.1
# https://github.com/opencv/opencv/issues/6055
(major, minor, _) = cv2.__version__.split(".")
if ((major == '3') and (minor == '1')):
cv2.ocl.setUseOpenCL(False)
# define display window name
window_name = "Live Camera Input" # window name
window_nameBG = "Background Model" # window name
window_nameFG = "Foreground Objects" # window name
window_nameFGP = "Foreground Probabiity" # window name
# if command line arguments are provided try to read video_name
# otherwise default to capture from attached H/W camera
if (((args.video_file) and (cap.open(str(args.video_file))))
or (cap.open(args.camera_to_use))):
# create window by name (as resizable)
cv2.namedWindow(window_name, cv2.WINDOW_NORMAL)
cv2.namedWindow(window_nameBG, cv2.WINDOW_NORMAL)
cv2.namedWindow(window_nameFG, cv2.WINDOW_NORMAL)
cv2.namedWindow(window_nameFGP, cv2.WINDOW_NORMAL)
# create GMM background subtraction object
# (using default parameters which are suitable for quick lecture demos
# - see manual for suitable choice of values to use in anger)
mog = cv2.createBackgroundSubtractorMOG2(
history=2000, varThreshold=16, detectShadows=True)
print("\nPress <space> to reset MoG model ...\n")
while (keep_processing):
# if video file successfully open then read frame from video
if (cap.isOpened):
ret, frame = cap.read()
# when we reach the end of the video (file) exit cleanly
if (ret == 0):
keep_processing = False
continue
# rescale if specified
if (args.rescale != 1.0):
frame = cv2.resize(
frame, (0, 0), fx=args.rescale, fy=args.rescale)
# add current frame to background model and retrieve current foreground
# objects
fgmask = mog.apply(frame)
# threshold this and clean it up using dilation with a elliptical mask
fgthres = cv2.threshold(fgmask.copy(), 200, 255, cv2.THRESH_BINARY)[1]
fgdilated = cv2.dilate(
fgthres, kernel=cv2.getStructuringElement(
cv2.MORPH_ELLIPSE, (3, 3)), iterations=3)
# get current background image (representative of current GMM model)
bgmodel = mog.getBackgroundImage()
# display images - input, background and original
cv2.imshow(window_name, frame)
cv2.imshow(window_nameFG, fgdilated)
cv2.imshow(window_nameFGP, fgmask)
cv2.imshow(window_nameBG, bgmodel)
# start the event loop - essential
# cv2.waitKey() is a keyboard binding function (argument is the time in
# ms.) It waits for specified milliseconds for any keyboard event.
# If you press any key in that time, the program continues.
# If 0 is passed, it waits indefinitely for a key stroke.
# (bitwise and with 0xFF to extract least significant byte of
# multi-byte response) here we use a wait time in ms. that takes
# account of processing time already used in the loop
# wait 40ms (i.e. 1000ms / 25 fps = 40 ms)
key = cv2.waitKey(40) & 0xFF
# It can also be set to detect specific key strokes by recording which
# key is pressed
# e.g. if user presses "x" then exit or reset MoG modelw when space is
# presses
if (key == ord('x')):
keep_processing = False
elif (key == ord(' ')):
print("\nResetting MoG background model ...\n")
mog = cv2.createBackgroundSubtractorMOG2(
history=2000, varThreshold=16, detectShadows=True)
# close all windows
cv2.destroyAllWindows()
else:
print("No video file specified or camera connected.")
#####################################################################