-
Notifications
You must be signed in to change notification settings - Fork 70
/
Copy pathhog.py
269 lines (185 loc) · 7.64 KB
/
hog.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
#####################################################################
# Example : HOG pedestrain detection from a video file
# specified on the command line (e.g. FILE.py video_file) or from an
# attached web camera
# Author : Toby Breckon, [email protected]
# Copyright (c) 2015 / 2016 School of Engineering & Computing Science,
# Durham University, UK
# License : LGPL - http://www.gnu.org/licenses/lgpl.html
#####################################################################
import cv2
import argparse
import sys
import math
import numpy as np
#####################################################################
keep_processing = True
# parse command line arguments for camera ID or video file
parser = argparse.ArgumentParser(
description='Perform ' +
sys.argv[0] +
' example operation on incoming camera/video image')
parser.add_argument(
"-c",
"--camera_to_use",
type=int,
help="specify camera to use",
default=0)
parser.add_argument(
"-r",
"--rescale",
type=float,
help="rescale image by this factor",
default=1.0)
parser.add_argument(
'video_file',
metavar='video_file',
type=str,
nargs='?',
help='specify optional video file')
args = parser.parse_args()
#####################################################################
# if we have OpenCL H/W acceleration availale, use it - we'll need it
cv2.ocl.setUseOpenCL(True)
print(
"INFO: OpenCL - available: ",
cv2.ocl.haveOpenCL(),
" using: ",
cv2.ocl.useOpenCL())
#####################################################################
def inside(r, q):
rx, ry, rw, rh = r
qx, qy, qw, qh = q
return rx > qx and ry > qy and rx + rw < qx + qw and ry + rh < qy + qh
def draw_detections(img, rects, thickness=1):
for x, y, w, h in rects:
# the HOG detector returns slightly larger rectangles than the
# real objects so we slightly shrink the rectangles to
# get a nicer output.
pad_w, pad_h = int(0.15 * w), int(0.05 * h)
cv2.rectangle(img, (x + pad_w, y + pad_h),
(x + w - pad_w, y + h - pad_h), (0, 255, 0), thickness)
#####################################################################
# power law transform
# image - colour image
# gamma - "gradient" co-efficient of gamma function
def powerlaw_transform(image, gamma):
# compute power-law transform
# remembering not defined for pixel = 0 (!)
# handle any overflow in a quick and dirty way using 0-255 clipping
image = np.clip(np.power(image, gamma), 0, 255).astype('uint8')
return image
#####################################################################
# this function is called as a call-back everytime the trackbar is moved
# (here we just do nothing)
def nothing(x):
pass
#####################################################################
# define video capture object
try:
# to use a non-buffered camera stream (via a separate thread)
if not (args.video_file):
import camera_stream
cap = camera_stream.CameraVideoStream() # T-API done later
else:
cap = cv2.VideoCapture() # not needed for video files
except BaseException:
# if not then just use OpenCV default
print("INFO: camera_stream class not found - camera input may be buffered")
cap = cv2.VideoCapture()
#####################################################################
# define display window name
window_name = "HOG pedestrain detection" # window name
# if command line arguments are provided try to read video_name
# otherwise default to capture from attached H/W camera
if (((args.video_file) and (cap.open(str(args.video_file))))
or (cap.open(args.camera_to_use))):
# create window by name (as resizable)
cv2.namedWindow(window_name, cv2.WINDOW_NORMAL)
# set up HoG detector
hog = cv2.HOGDescriptor()
hog.setSVMDetector(cv2.HOGDescriptor_getDefaultPeopleDetector())
# add some track bar controllers for settings
neighbourhood = 3
cv2.createTrackbar("Smoothing : neighbourhood, N", window_name,
neighbourhood, 40, nothing)
sigma = 1
cv2.createTrackbar("Smoothing : sigma", window_name, sigma, 10, nothing)
gamma = 100 # default gamma = 100 * 0.01 = 1 -> no change
cv2.createTrackbar("gamma, (* 0.01)", window_name, gamma, 150, nothing)
svm_threshold = 0 # by default the SVM's own threshold at the hyperplane
cv2.createTrackbar("SVM threshold, (distance from hyper-plane, * 0.1)",
window_name, svm_threshold, 10, nothing)
while (keep_processing):
# if video file successfully open then read frame from video
if (cap.isOpened):
ret, frame = cap.read()
# when we reach the end of the video (file) exit cleanly
if (ret == 0):
keep_processing = False
continue
# rescale if specified
if (args.rescale != 1.0):
frame = cv2.resize(
frame, (0, 0), fx=args.rescale, fy=args.rescale)
# start a timer (to see how long processing and display takes)
start_t = cv2.getTickCount()
# get parameters from track bars
neighbourhood = cv2.getTrackbarPos(
"Smoothing : neighbourhood, N", window_name)
sigma = cv2.getTrackbarPos("Smoothing : sigma", window_name)
gamma = cv2.getTrackbarPos("gamma, (* 0.01)", window_name) * 0.01
svm_threshold = cv2.getTrackbarPos(
"SVM threshold, (distance from hyper-plane, * 0.1)",
window_name) * 0.1
# check neighbourhood is greater than 3 and odd
neighbourhood = max(3, neighbourhood)
if not (neighbourhood % 2):
neighbourhood = neighbourhood + 1
# use power-law function to perform gamma correction
# and convert np array to T-API universal array for H/W acceleration
frame = cv2.UMat(powerlaw_transform(frame, gamma))
# perform Gaussian smoothing using NxN neighbourhood
frame = cv2.GaussianBlur(
frame,
(neighbourhood,
neighbourhood),
sigma,
sigma,
borderType=cv2.BORDER_REPLICATE)
# perform HOG based pedestrain detection
found, w = hog.detectMultiScale(
frame, winStride=(
8, 8), padding=(
32, 32), scale=1.05, hitThreshold=svm_threshold)
found_filtered = []
for ri, r in enumerate(found):
for qi, q in enumerate(found):
if ri != qi and inside(r, q):
break
else:
found_filtered.append(r)
draw_detections(frame, found_filtered, 3)
# display image
cv2.imshow(window_name, frame)
# stop the timer and convert to ms. (to see how long processing and
# display takes)
stop_t = ((cv2.getTickCount() - start_t) /
cv2.getTickFrequency()) * 1000
# wait 40ms or less depending on processing time taken (i.e. 1000ms /
# 25 fps = 40 ms)
key = cv2.waitKey(max(2, 40 - int(math.ceil(stop_t)))) & 0xFF
# e.g. if user presses "x" then exit / press "f" for fullscreen
# display
if (key == ord('x')):
keep_processing = False
elif (key == ord('f')):
cv2.setWindowProperty(
window_name,
cv2.WND_PROP_FULLSCREEN,
cv2.WINDOW_FULLSCREEN)
# close all windows
cv2.destroyAllWindows()
else:
print("No video file specified or camera connected.")
#####################################################################