-
Notifications
You must be signed in to change notification settings - Fork 70
/
Copy pathhaar_cascade_detection.py
223 lines (158 loc) · 6.66 KB
/
haar_cascade_detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
#####################################################################
# Example : perform haar cascade detection on live display from a video file
# specified on the command line (e.g. python FILE.py video_file) or from an
# attached web camera
# Author : Toby Breckon, [email protected]
# Copyright (c) 2015 / 2016 School of Engineering & Computing Science,
# Durham University, UK
# License : LGPL - http://www.gnu.org/licenses/lgpl.html
# based on example at:
# http://docs.opencv.org/3.1.0/d7/d8b/tutorial_py_face_detection.html#gsc.tab=0
# get trained cascade files from:
# https://github.com/opencv/opencv/tree/master/data/haarcascades
#####################################################################
import cv2
import argparse
import sys
import os
import math
#####################################################################
keep_processing = True
faces_recorded = 0
# parse command line arguments for camera ID or video file
parser = argparse.ArgumentParser(
description='Perform ' +
sys.argv[0] +
' example operation on incoming camera/video image')
parser.add_argument(
"-c",
"--camera_to_use",
type=int,
help="specify camera to use",
default=0)
parser.add_argument(
"-r",
"--rescale",
type=float,
help="rescale image by this factor",
default=1.0)
parser.add_argument(
"-ha",
"--harvest",
type=str,
help="path to save detected faces to",
default='')
parser.add_argument(
'video_file',
metavar='video_file',
type=str,
nargs='?',
help='specify optional video file')
args = parser.parse_args()
#####################################################################
# set up directory to save faces to if specified
if (len(args.harvest) > 0):
try:
os.mkdir(args.harvest)
except OSError:
print("Harvesting to existing directory: " + args.harvest)
#####################################################################
# define video capture object
try:
# to use a non-buffered camera stream (via a separate thread)
if not (args.video_file):
import camera_stream
cap = camera_stream.CameraVideoStream()
else:
cap = cv2.VideoCapture() # not needed for video files
except BaseException:
# if not then just use OpenCV default
print("INFO: camera_stream class not found - camera input may be buffered")
cap = cv2.VideoCapture()
# define display window name
window_name = "Face Detection using Haar Cascades" # window name
# define haar cascade objects
# required cascade classifier files (and many others) available from:
# https://github.com/opencv/opencv/tree/master/data/haarcascades
face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
eye_cascade = cv2.CascadeClassifier('haarcascade_eye.xml')
if (face_cascade.empty() or eye_cascade.empty()):
print("Failed to load cascade from file.")
# if command line arguments are provided try to read video_name
# otherwise default to capture from attached H/W camera
if (((args.video_file) and (cap.open(str(args.video_file))))
or (cap.open(args.camera_to_use))):
# create window by name (as resizable)
cv2.namedWindow(window_name, cv2.WINDOW_NORMAL)
while (keep_processing):
# if video file successfully open then read frame from video
if (cap.isOpened):
ret, frame = cap.read()
# rescale if specified
if (args.rescale != 1.0):
frame = cv2.resize(
frame, (0, 0), fx=args.rescale, fy=args.rescale)
# start a timer (to see how long processing and display takes)
start_t = cv2.getTickCount()
# convert to grayscale
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# detect faces using haar cascade trained on faces
faces = face_cascade.detectMultiScale(
gray, scaleFactor=1.2, minNeighbors=4, minSize=(
30, 30), flags=cv2.CASCADE_DO_CANNY_PRUNING)
# for each detected face, try to detect eyes inside the top
# half of the face region face region
for (x, y, w, h) in faces:
# extract regions of interest (roi) and draw each face bounding box
# and
# top 50% to detect eyes
roi_gray = gray[y:y + math.floor(h * 0.5), x:x + w]
# copy to save if required
roi_color = frame[y:y + h, x:x + w].copy()
cv2.rectangle(frame, (x, y), (x + w, y + h), (255, 0, 0), 2)
# detect eyes using haar cascade trained on eyes
eyes = eye_cascade.detectMultiScale(roi_gray)
# for each detected eye, draw bounding box
for (ex, ey, ew, eh) in eyes:
cv2.rectangle(frame, (x + ex, y + ey),
(x + ex + ew, y + ey + eh), (0, 255, 0), 2)
# if specified, record all the faces we see to a specified
# directory
if (len(args.harvest) > 0):
filename = os.path.join(
args.harvest, "face_" +
str(format(faces_recorded, '04')) + ".png")
cv2.imwrite(filename, roi_color)
faces_recorded += 1
# display image
cv2.imshow(window_name, frame)
# stop the timer and convert to ms. (to see how long processing and
# display takes)
stop_t = ((cv2.getTickCount() - start_t) /
cv2.getTickFrequency()) * 1000
# start the event loop - essential
# cv2.waitKey() is a keyboard binding function (argument is the time in
# ms.) It waits for specified milliseconds for any keyboard event.
# If you press any key in that time, the program continues.
# If 0 is passed, it waits indefinitely for a key stroke.
# (bitwise and with 0xFF to extract least significant byte of
# multi-byte response) here we use a wait time in ms. that takes
# account of processing time already used in the loop
# wait 40ms or less depending on processing time taken (i.e. 1000ms /
# 25 fps = 40 ms)
key = cv2.waitKey(max(2, 40 - int(math.ceil(stop_t)))) & 0xFF
# It can also be set to detect specific key strokes by recording which
# key is pressed
# e.g. if user presses "x" then exit / press "f" for fullscreen
# display
if (key == ord('x')):
keep_processing = False
elif (key == ord('f')):
cv2.setWindowProperty(
window_name,
cv2.WND_PROP_FULLSCREEN,
cv2.WINDOW_FULLSCREEN)
# close all windows
cv2.destroyAllWindows()
else:
print("No video file specified or camera connected.")