-
Notifications
You must be signed in to change notification settings - Fork 70
/
Copy pathgradient_orientation.py
261 lines (186 loc) · 7.37 KB
/
gradient_orientation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
#####################################################################
# Example : perform generic live display of gradient orientations
# (which form the essensce of the Histogram of Oriented Gradient (HOG) feature)
# from a video file specified on the command line
# (e.g. python FILE.py video_file) or from an attached web camera
# Author : Toby Breckon, [email protected]
# https://www.learnopencv.com/histogram-of-oriented-gradients/
# Copyright (c) 2018 Dept. Computer Science,
# Durham University, UK
# License : LGPL - http://www.gnu.org/licenses/lgpl.html
#####################################################################
import cv2
import argparse
import sys
import math
import numpy as np
#####################################################################
keep_processing = True
# parse command line arguments for camera ID or video file
parser = argparse.ArgumentParser(
description='Perform ' +
sys.argv[0] +
' example operation on incoming camera/video image')
parser.add_argument(
"-c",
"--camera_to_use",
type=int,
help="specify camera to use",
default=0)
parser.add_argument(
"-r",
"--rescale",
type=float,
help="rescale image by this factor",
default=1.0)
parser.add_argument(
'video_file',
metavar='video_file',
type=str,
nargs='?',
help='specify optional video file')
args = parser.parse_args()
#####################################################################
# this function is called as a call-back everytime the trackbar is moved
# (here we just do nothing)
def nothing(x):
pass
#####################################################################
# define video capture object
try:
# to use a non-buffered camera stream (via a separate thread)
if not (args.video_file):
import camera_stream
cap = camera_stream.CameraVideoStream()
else:
cap = cv2.VideoCapture() # not needed for video files
except BaseException:
# if not then just use OpenCV default
print("INFO: camera_stream class not found - camera input may be buffered")
cap = cv2.VideoCapture()
# define display window names
window_nameGx = "Gradient - Gx" # window name
window_nameGy = "Gradient - Gy" # window name
window_nameAngle = "Gradient Angle" # window name
# if command line arguments are provided try to read video_name
# otherwise default to capture from attached camera
if (((args.video_file) and (cap.open(str(args.video_file))))
or (cap.open(args.camera_to_use))):
# create window by name (as resizable)
cv2.namedWindow(window_nameGx, cv2.WINDOW_NORMAL)
cv2.namedWindow(window_nameGy, cv2.WINDOW_NORMAL)
cv2.namedWindow(window_nameAngle, cv2.WINDOW_NORMAL)
# add some track bar controllers for settings
lower_threshold = 0
cv2.createTrackbar(
"lower",
window_nameAngle,
lower_threshold,
180,
nothing)
upper_threshold = 180
cv2.createTrackbar(
"upper",
window_nameAngle,
upper_threshold,
180,
nothing)
neighbourhood = 3
cv2.createTrackbar(
"neighbourhood, N",
window_nameGy,
neighbourhood,
40,
nothing)
sigma = 1
cv2.createTrackbar(
"sigma",
window_nameGy,
sigma,
10,
nothing)
while (keep_processing):
# start a timer (to see how long processing and display takes)
start_t = cv2.getTickCount()
# if video file successfully open then read frame from video
if (cap.isOpened):
ret, frame = cap.read()
# when we reach the end of the video (file) exit cleanly
if (ret == 0):
keep_processing = False
continue
# rescale if specified
if (args.rescale != 1.0):
frame = cv2.resize(
frame, (0, 0), fx=args.rescale, fy=args.rescale)
# get parameter from track bars - Gaussian pre-smoothing
neighbourhood = cv2.getTrackbarPos("neighbourhood, N", window_nameGy)
sigma = cv2.getTrackbarPos("sigma", window_nameGy)
# check neighbourhood is greater than 3 and odd
neighbourhood = max(3, neighbourhood)
if not (neighbourhood % 2):
neighbourhood = neighbourhood + 1
# perform Gaussian smoothing using NxN neighbourhood
smoothed_img = cv2.GaussianBlur(
frame,
(neighbourhood,
neighbourhood),
sigma,
sigma,
borderType=cv2.BORDER_REPLICATE)
# compute the gradients in the x and y directions separately
# N.B from here onward these images are 32-bit float
gx = cv2.Sobel(smoothed_img, cv2.CV_32F, 1, 0)
gy = cv2.Sobel(smoothed_img, cv2.CV_32F, 0, 1)
# calculate gradient magnitude and direction (in degrees)
mag, angle = cv2.cartToPolar(gx, gy, angleInDegrees=True)
# normalize
gx = np.abs(gx)
gy = np.abs(gy)
angle = np.abs(angle)
# normalize other values 0 -> 180
gx = cv2.normalize(gx, None, 0, 255, cv2.NORM_MINMAX)
gy = cv2.normalize(gy, None, 0, 255, cv2.NORM_MINMAX)
angle = cv2.normalize(angle, None, 0, 180, cv2.NORM_MINMAX)
# for the angle take the max across all three channels
(aB, aG, aR) = cv2.split(angle)
angle = np.maximum(np.maximum(aR, aG), aB)
# get threshold from trackbars and threshold to keep inner range
lower_threshold = cv2.getTrackbarPos("lower", window_nameAngle)
upper_threshold = cv2.getTrackbarPos("upper", window_nameAngle)
mask = cv2.inRange(angle, lower_threshold, upper_threshold)
angle = cv2.bitwise_and(angle.astype(np.uint8), mask)
# display images (as 8-bit)
cv2.imshow(window_nameGx, gx.astype(np.uint8))
cv2.imshow(window_nameGy, gy.astype(np.uint8))
cv2.imshow(window_nameAngle, angle.astype(np.uint8))
# stop the timer and convert to ms. (to see how long processing and
# display takes)
stop_t = ((cv2.getTickCount() - start_t) /
cv2.getTickFrequency()) * 1000
# start the event loop - essential
# cv2.waitKey() is a keyboard binding function (argument is the time in
# milliseconds). It waits for specified milliseconds for any keyboard
# event. If you press any key in that time, the program continues.
# If 0 is passed, it waits indefinitely for a key stroke.
# (bitwise and with 0xFF to extract least significant byte of
# multi-byte response)
# wait 40ms or less depending on processing time taken (i.e. 1000ms /
# 25 fps = 40 ms)
key = cv2.waitKey(max(2, 40 - int(math.ceil(stop_t)))) & 0xFF
# It can also be set to detect specific key strokes by recording which
# key is pressed
# e.g. if user presses "x" then exit / press "f" for fullscreen
# display
if (key == ord('x')):
keep_processing = False
elif (key == ord('f')):
cv2.setWindowProperty(
window_nameAngle,
cv2.WND_PROP_FULLSCREEN,
cv2.WINDOW_FULLSCREEN)
# close all windows
cv2.destroyAllWindows()
else:
print("No video file specified or camera connected.")
#####################################################################