-
Notifications
You must be signed in to change notification settings - Fork 70
/
Copy patheigenfaces.py
414 lines (301 loc) · 13.1 KB
/
eigenfaces.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
##########################################################################
# Example : perform EigenFace based face recognition using haar cascade
# detection for initial face localization within the image
# Author : Toby Breckon, [email protected]
# Copyright (c) 2018 Department of Computer Science,
# Durham University, UK
# License : LGPL - http://www.gnu.org/licenses/lgpl.html
# recognition part based on earlier C example at:
# https://github.com/tobybreckon/c-examples-ipcv/blob/master/eigenimage_based_recognition.cc
# image loading part based on example at:
# https://www.learnopencv.com/eigenface-using-opencv-c-python/
# get trained cascade files from:
# https://github.com/opencv/opencv/tree/master/data/haarcascades
# original academic references
# - face detection part [IJCV - Viola / Jones, 2004]
# - face recognition part [Pentland / Turk, 1991]
##########################################################################
import cv2
import argparse
import sys
import os
import numpy as np
import math
##########################################################################
keep_processing = True
##########################################################################
# parse command line arguments for camera ID or video file
parser = argparse.ArgumentParser(
description='Perform ' +
sys.argv[0] +
' example operation on incoming camera/video image')
parser.add_argument(
"-c",
"--camera_to_use",
type=int,
help="specify camera to use",
default=0)
parser.add_argument(
"-r",
"--rescale",
type=float,
help="rescale image by this factor",
default=1.0)
parser.add_argument(
"-e",
"--eigenfaces",
type=int,
help="specify number of eigenface (PCA) dimensions to use",
default=10)
parser.add_argument(
"-f",
"--path_to_faces",
type=str,
help="path to face images",
default='/tmp/images/')
parser.add_argument(
"-fs",
"--fullscreen",
action='store_true',
help="run in full screen mode")
parser.add_argument(
"-p",
"--portrait_percentage",
type=int,
help="for potrait style inputs, specify upper percentage \
of image in which to detect face",
default=100)
parser.add_argument(
"-s",
"--face_size",
type=int,
help="specify height/width of face images to use for the input to the PCA",
default=300)
parser.add_argument(
"-es",
"--eigenfaces_to_skip",
type=int,
help="skip the first N eigenface dimensions that \
normally contain illumination information only",
default=3)
parser.add_argument(
'video_file',
metavar='video_file',
type=str,
nargs='?',
help='specify optional video file')
args = parser.parse_args()
##########################################################################
# Read images from the directory
def readImages(path, haar_face_detector):
print("Reading images from " + path, end="...")
cv2.namedWindow("face", cv2.WINDOW_AUTOSIZE)
# Create array of array of images and names
images = []
names = []
# List all files in the directory and read points from text files one by
# one
for filePath in sorted(os.listdir(path)):
fileExt = os.path.splitext(filePath)[1]
name = os.path.splitext(filePath)[0]
if fileExt in [".jpg", ".jpeg", ".png"]:
# load image
imagePath = os.path.join(path, filePath)
im = cv2.imread(imagePath)
if im is None:
print("image:{} not read properly".format(imagePath))
continue
# assume 1 face per image, detect using haar, find in top N% of
# image
gray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
height, width = gray.shape
face = haar_face_detector.detectMultiScale(
gray[0:int(height * (args.portrait_percentage / 100)),
0:width],
scaleFactor=1.1, minNeighbors=4, minSize=(60, 60),
flags=cv2.CASCADE_DO_CANNY_PRUNING)
if (len(face) > 0):
(x, y, w, h) = face[0]
roi_gray = gray[y:y + h, x:x + w]
roi_gray = cv2.resize(
roi_gray, (args.face_size, args.face_size))
# try to compensate for illumination variance using histogram
# equalization
roi_gray = cv2.equalizeHist(roi_gray)
# Add image to list
# (once only here, but could also add flips or other
# transforms to make it more robust)
images.append(roi_gray)
names.append(name)
cv2.imshow("face", roi_gray)
cv2.waitKey(100)
else:
print("image:{} - no face detected.".format(imagePath))
cv2.destroyWindow("face")
if len(images) == 0:
print("No facws found in image set: " + path)
sys.exit(0)
print(str(len(images)) + " files read.")
return (images, names)
##########################################################################
# perform PCA on a set of images
def performPCA(images):
# Allocate space for all images in one data matrix. The size of the data
# ( w * h * c, numImages ) where, w = width of an image in the dataset.
# h = height of an image in the dataset. c is for the number of color
# channels.
numImages = len(images)
sz = images[0].shape
channels = 1 # grayescale
data = np.zeros((numImages, sz[0] * sz[1] * channels), dtype=np.float32)
# store images as floating point vectors normalized 0 -> 1
for i in range(0, numImages):
image = np.float32(images[i]) / 255.0
data[i, :] = image.flatten() # N.B. data is stored as rows
# compute the eigenvectors from the stack of image vectors created
mean, eigenVectors = cv2.PCACompute(
data, mean=None, maxComponents=args.eigenfaces)
# use the eigenvectors to project the set of images to the new PCA space
# representation
coefficients = cv2.PCAProject(data, mean, eigenVectors)
# calculate the covariance and mean of the PCA space representation of the
# images (skipping the first N eigenfaces that often contain just
# illumination variance, default N=3 )
covariance_coeffs, mean_coeffs = cv2.calcCovarMatrix(
coefficients[:, args.eigenfaces_to_skip:args.eigenfaces], mean=None,
flags=cv2.COVAR_NORMAL | cv2.COVAR_ROWS, ctype=cv2.CV_32F)
return (mean, eigenVectors, coefficients, mean_coeffs, covariance_coeffs)
##########################################################################
# return index of best matching face from set of all PCA projcted coefficients
# based on miniumum Mahalanobis (M) distance and this minimum M distance
def find_matching_face(
face_coefficients_to_match,
coefficients_of_all_faces,
covariance):
# set up loop variables
nearest_face_index = 0
nearest_face_distance = 100 # i.e. huge
current_face = 0
for pca_face_coefficient in coefficients_of_all_faces:
# calculate the Mahalanobis distamce between the coefficients we need
# to match and each from the set of faces (skipping the first N
# eigenfaces that often contain just illumination variance, def. N=3)
m_dist = cv2.Mahalanobis(
face_coefficients_to_match[:,
args.eigenfaces_to_skip:
args.eigenfaces],
pca_face_coefficient.reshape(1,
args.eigenfaces)[:,
args.
eigenfaces_to_skip:
args.eigenfaces],
np.linalg.inv(covariance))
# alternatively use the L1 or L2 norm as per original
# [Pentland / Turk 1991] paper - which used L1
# m_dist = numpy.linalg.norm(
# face_coefficients_to_match[:,3:args.eigenfaces] -
# pca_face_coefficient.reshape(1,args.eigenfaces)
# [:,3:args.eigenfaces])
if (m_dist < nearest_face_distance):
nearest_face_index = current_face
nearest_face_distance = m_dist
current_face += 1
return (nearest_face_index, nearest_face_distance)
##########################################################################
# define video capture object
try:
# to use a non-buffered camera stream (via a separate thread)
if not (args.video_file):
import camera_stream
cap = camera_stream.CameraVideoStream()
else:
cap = cv2.VideoCapture() # not needed for video files
except BaseException:
# if not then just use OpenCV default
print("INFO: camera_stream class not found - camera input may be buffered")
cap = cv2.VideoCapture()
# define display window name
window_name = "Face Recognition using EigenFaces" # window name
# define haar cascade objects
# required cascade classifier files (and many others) available from:
# https://github.com/opencv/opencv/tree/master/data/haarcascades
face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
if (face_cascade.empty()):
print("Failed to load cascade from file.")
sys.exit(0)
# load set of face images
(images, names) = readImages(args.path_to_faces, face_cascade)
# perform PCA on the images
(mean, eigenVectors, coefficients, mean_coeffs,
covariance_coeffs) = performPCA(images)
# if command line arguments are provided try to read video_name
# otherwise default to capture from attached H/W camera
if (((args.video_file) and (cap.open(str(args.video_file))))
or (cap.open(args.camera_to_use))):
# create window by name (as resizable)
cv2.namedWindow(window_name, cv2.WINDOW_NORMAL)
while (keep_processing):
# if video file successfully open then read frame from video
if (cap.isOpened):
ret, frame = cap.read()
# rescale if specified
if (args.rescale != 1.0):
frame = cv2.resize(
frame, (0, 0), fx=args.rescale, fy=args.rescale)
# start a timer (to see how long processing and display takes)
start_t = cv2.getTickCount()
# convert to grayscale
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# detect faces using haar cascade trained on faces
faces = face_cascade.detectMultiScale(
gray, scaleFactor=1.1, minNeighbors=4, minSize=(
60, 60), flags=cv2.CASCADE_DO_CANNY_PRUNING)
# for each detected face, try to detect eyes inside the top
# half of the face region face region
for (x, y, w, h) in faces:
# draw each face bounding box and extract regions of interest (roi)
cv2.rectangle(frame, (x, y), (x + w, y + h), (255, 0, 0), 2)
# project detected face to PCA space
roi_gray = gray[y:y + h, x:x + w]
roi_gray = cv2.resize(roi_gray, (args.face_size, args.face_size))
# try to compensate for illumination variance
roi_gray = cv2.equalizeHist(roi_gray)
roi_gray = np.float32(roi_gray) / 255.0 # normalise as 0 -> 1
face_coefficients = cv2.PCAProject(roi_gray.flatten().reshape(
1, args.face_size * args.face_size), mean, eigenVectors)
# measure distance to PCA coefficient for each face and find best
# match
face_index, face_distance = find_matching_face(
face_coefficients, coefficients, covariance_coeffs)
# show best match / display name and Mahalanobis distance for best
# match
cv2.putText(frame, names[face_index] +
": " +
str(round(face_distance, 2)), (x, y + h + 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0))
# display stored equalizeHist version side-by-side
cv2.imshow("best match", images[face_index])
# display image
cv2.imshow(window_name, frame)
cv2.setWindowProperty(window_name, cv2.WND_PROP_FULLSCREEN,
cv2.WINDOW_FULLSCREEN & args.fullscreen)
# stop the timer and convert to ms. (to see how long processing and
# display takes)
stop_t = ((cv2.getTickCount() - start_t) /
cv2.getTickFrequency()) * 1000
# start the event loop + detect specific key strokes
# wait 40ms or less depending on processing time taken (i.e. 1000ms /
# 25 fps = 40 ms)
key = cv2.waitKey(max(2, 40 - int(math.ceil(stop_t)))) & 0xFF
# It can also be set to detect specific key strokes by recording which
# key is pressed
# e.g. if user presses "x" then exit / press "f" for fullscreen
# display
if (key == ord('x')):
keep_processing = False
elif (key == ord('f')):
args.fullscreen = not (args.fullscreen)
# close all windows
cv2.destroyAllWindows()
else:
print("No video file specified or camera connected.")