-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathnumpy_tflops.py
85 lines (71 loc) · 2.28 KB
/
numpy_tflops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
from tqdm import tqdm
from time import time, sleep
import numpy as np
import os
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--nproc', type=int, default=1)
parser.add_argument('--runs', type=int, default=3)
args = parser.parse_args()
os.environ["OMP_NUM_THREADS"] = str(args.nproc)
os.environ["OPENBLAS_NUM_THREADS"] = str(args.nproc)
os.environ["MKL_NUM_THREADS"] = str(args.nproc)
os.environ["VECLIB_MAXIMUM_THREADS"] = str(args.nproc)
os.environ["NUMEXPR_NUM_THREADS"] = str(args.nproc)
print("\nUsing", args.nproc, "threads for benchmark\n")
size_list = []
tflops_list = {
"half": [],
"single": [],
"double": [],
}
def get_tflops(size, iterations, dtype):
print(size, dtype)
A, B = np.random.random((size, size)), np.random.random((size, size))
if dtype == "half":
A, B = A.astype(np.float16), B.astype(np.float16)
elif dtype == "single":
A, B = A.astype(np.float32), B.astype(np.float32)
elif dtype == "double":
A, B = A.astype(np.float64), B.astype(np.float64)
else:
print("Unknown dtype", dtype, "using system default")
np.matmul(A, B)
st = time()
for i in range(1):
np.matmul(A, B)
et = time()
overhead = et-st
sleep(2.0)
st = time()
for i in range(iterations+1):
np.matmul(A, B)
et = time()
duration = et-st
if duration < 3:
extend_ratio = 3/duration
new_iterations = int(extend_ratio*iterations)
print("new_iterations", new_iterations)
st = time()
for i in range(new_iterations+1):
np.matmul(A, B)
et = time()
duration = et-st - overhead
fps = new_iterations/duration
else:
duration -= overhead
fps = iterations/duration
matmul_flops = 2 * (size**3)
TFLOPS = fps*matmul_flops/(1e12)
size_list.append(size)
tflops_list[dtype].append(TFLOPS)
sleep(2.0)
for size in tqdm([8, 32, 128, 1024, 2048, 4096, 8192]):
get_tflops(size, iterations=args.runs, dtype="single")
print(tflops_list)
for size in tqdm([8, 32, 128, 1024, 2048, 4096, 8192]):
get_tflops(size, iterations=args.runs, dtype="double")
print(tflops_list)
for size in tqdm([8, 32, 128, 1024]):
get_tflops(size, iterations=args.runs, dtype="half")
print(tflops_list)