-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
Copy pathmujoco_td3_hl.py
92 lines (82 loc) · 2.7 KB
/
mujoco_td3_hl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
#!/usr/bin/env python3
import os
from collections.abc import Sequence
import torch
from sensai.util import logging
from sensai.util.logging import datetime_tag
from examples.mujoco.mujoco_env import MujocoEnvFactory
from tianshou.highlevel.config import SamplingConfig
from tianshou.highlevel.experiment import (
ExperimentConfig,
TD3ExperimentBuilder,
)
from tianshou.highlevel.params.env_param import MaxActionScaled
from tianshou.highlevel.params.noise import (
MaxActionScaledGaussian,
)
from tianshou.highlevel.params.policy_params import TD3Params
def main(
experiment_config: ExperimentConfig,
task: str = "Ant-v4",
buffer_size: int = 1000000,
hidden_sizes: Sequence[int] = (256, 256),
actor_lr: float = 3e-4,
critic_lr: float = 3e-4,
gamma: float = 0.99,
tau: float = 0.005,
exploration_noise: float = 0.1,
policy_noise: float = 0.2,
noise_clip: float = 0.5,
update_actor_freq: int = 2,
start_timesteps: int = 25000,
epoch: int = 200,
step_per_epoch: int = 5000,
step_per_collect: int = 1,
update_per_step: int = 1,
n_step: int = 1,
batch_size: int = 256,
training_num: int = 1,
test_num: int = 10,
) -> None:
log_name = os.path.join(task, "td3", str(experiment_config.seed), datetime_tag())
sampling_config = SamplingConfig(
num_epochs=epoch,
step_per_epoch=step_per_epoch,
num_train_envs=training_num,
num_test_envs=test_num,
buffer_size=buffer_size,
batch_size=batch_size,
step_per_collect=step_per_collect,
update_per_step=update_per_step,
start_timesteps=start_timesteps,
start_timesteps_random=True,
)
env_factory = MujocoEnvFactory(
task,
train_seed=sampling_config.train_seed,
test_seed=sampling_config.test_seed,
obs_norm=False,
)
experiment = (
TD3ExperimentBuilder(env_factory, experiment_config, sampling_config)
.with_td3_params(
TD3Params(
tau=tau,
gamma=gamma,
estimation_step=n_step,
update_actor_freq=update_actor_freq,
noise_clip=MaxActionScaled(noise_clip),
policy_noise=MaxActionScaled(policy_noise),
exploration_noise=MaxActionScaledGaussian(exploration_noise),
actor_lr=actor_lr,
critic1_lr=critic_lr,
critic2_lr=critic_lr,
),
)
.with_actor_factory_default(hidden_sizes, torch.nn.Tanh)
.with_common_critic_factory_default(hidden_sizes, torch.nn.Tanh)
.build()
)
experiment.run(run_name=log_name)
if __name__ == "__main__":
logging.run_cli(main)