-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
Copy pathmujoco_redq_hl.py
91 lines (81 loc) · 2.63 KB
/
mujoco_redq_hl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
#!/usr/bin/env python3
import os
from collections.abc import Sequence
from typing import Literal
from sensai.util import logging
from sensai.util.logging import datetime_tag
from examples.mujoco.mujoco_env import MujocoEnvFactory
from tianshou.highlevel.config import SamplingConfig
from tianshou.highlevel.experiment import (
ExperimentConfig,
REDQExperimentBuilder,
)
from tianshou.highlevel.params.alpha import AutoAlphaFactoryDefault
from tianshou.highlevel.params.policy_params import REDQParams
def main(
experiment_config: ExperimentConfig,
task: str = "Ant-v4",
buffer_size: int = 1000000,
hidden_sizes: Sequence[int] = (256, 256),
ensemble_size: int = 10,
subset_size: int = 2,
actor_lr: float = 1e-3,
critic_lr: float = 1e-3,
gamma: float = 0.99,
tau: float = 0.005,
alpha: float = 0.2,
auto_alpha: bool = False,
alpha_lr: float = 3e-4,
start_timesteps: int = 10000,
epoch: int = 200,
step_per_epoch: int = 5000,
step_per_collect: int = 1,
update_per_step: int = 20,
n_step: int = 1,
batch_size: int = 256,
target_mode: Literal["mean", "min"] = "min",
training_num: int = 1,
test_num: int = 10,
) -> None:
log_name = os.path.join(task, "redq", str(experiment_config.seed), datetime_tag())
sampling_config = SamplingConfig(
num_epochs=epoch,
step_per_epoch=step_per_epoch,
batch_size=batch_size,
num_train_envs=training_num,
num_test_envs=test_num,
buffer_size=buffer_size,
step_per_collect=step_per_collect,
update_per_step=update_per_step,
repeat_per_collect=None,
start_timesteps=start_timesteps,
start_timesteps_random=True,
)
env_factory = MujocoEnvFactory(
task,
train_seed=sampling_config.train_seed,
test_seed=sampling_config.test_seed,
obs_norm=False,
)
experiment = (
REDQExperimentBuilder(env_factory, experiment_config, sampling_config)
.with_redq_params(
REDQParams(
actor_lr=actor_lr,
critic_lr=critic_lr,
gamma=gamma,
tau=tau,
alpha=AutoAlphaFactoryDefault(lr=alpha_lr) if auto_alpha else alpha,
estimation_step=n_step,
target_mode=target_mode,
subset_size=subset_size,
ensemble_size=ensemble_size,
),
)
.with_actor_factory_default(hidden_sizes)
.with_critic_ensemble_factory_default(hidden_sizes)
.build()
)
experiment.run(run_name=log_name)
if __name__ == "__main__":
logging.run_cli(main)