-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
Copy pathmujoco_ddpg.py
executable file
·178 lines (161 loc) · 6.51 KB
/
mujoco_ddpg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
#!/usr/bin/env python3
import argparse
import datetime
import os
import pprint
import numpy as np
import torch
from mujoco_env import make_mujoco_env
from tianshou.data import Collector, CollectStats, ReplayBuffer, VectorReplayBuffer
from tianshou.exploration import GaussianNoise
from tianshou.highlevel.logger import LoggerFactoryDefault
from tianshou.policy import DDPGPolicy
from tianshou.policy.base import BasePolicy
from tianshou.trainer import OffpolicyTrainer
from tianshou.utils.net.common import Net
from tianshou.utils.net.continuous import Actor, Critic
def get_args() -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument("--task", type=str, default="Ant-v4")
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--buffer-size", type=int, default=1000000)
parser.add_argument("--hidden-sizes", type=int, nargs="*", default=[256, 256])
parser.add_argument("--actor-lr", type=float, default=1e-3)
parser.add_argument("--critic-lr", type=float, default=1e-3)
parser.add_argument("--gamma", type=float, default=0.99)
parser.add_argument("--tau", type=float, default=0.005)
parser.add_argument("--exploration-noise", type=float, default=0.1)
parser.add_argument("--start-timesteps", type=int, default=25000)
parser.add_argument("--epoch", type=int, default=200)
parser.add_argument("--step-per-epoch", type=int, default=5000)
parser.add_argument("--step-per-collect", type=int, default=1)
parser.add_argument("--update-per-step", type=int, default=1)
parser.add_argument("--n-step", type=int, default=1)
parser.add_argument("--batch-size", type=int, default=256)
parser.add_argument("--training-num", type=int, default=1)
parser.add_argument("--test-num", type=int, default=10)
parser.add_argument("--logdir", type=str, default="log")
parser.add_argument("--render", type=float, default=0.0)
parser.add_argument(
"--device",
type=str,
default="cuda" if torch.cuda.is_available() else "cpu",
)
parser.add_argument("--resume-path", type=str, default=None)
parser.add_argument("--resume-id", type=str, default=None)
parser.add_argument(
"--logger",
type=str,
default="tensorboard",
choices=["tensorboard", "wandb"],
)
parser.add_argument("--wandb-project", type=str, default="mujoco.benchmark")
parser.add_argument(
"--watch",
default=False,
action="store_true",
help="watch the play of pre-trained policy only",
)
return parser.parse_args()
def test_ddpg(args: argparse.Namespace = get_args()) -> None:
env, train_envs, test_envs = make_mujoco_env(
args.task,
args.seed,
args.training_num,
args.test_num,
obs_norm=False,
)
args.state_shape = env.observation_space.shape or env.observation_space.n
args.action_shape = env.action_space.shape or env.action_space.n
args.max_action = env.action_space.high[0]
args.exploration_noise = args.exploration_noise * args.max_action
print("Observations shape:", args.state_shape)
print("Actions shape:", args.action_shape)
print("Action range:", np.min(env.action_space.low), np.max(env.action_space.high))
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
# model
net_a = Net(state_shape=args.state_shape, hidden_sizes=args.hidden_sizes, device=args.device)
actor = Actor(net_a, args.action_shape, max_action=args.max_action, device=args.device).to(
args.device,
)
actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)
net_c = Net(
state_shape=args.state_shape,
action_shape=args.action_shape,
hidden_sizes=args.hidden_sizes,
concat=True,
device=args.device,
)
critic = Critic(net_c, device=args.device).to(args.device)
critic_optim = torch.optim.Adam(critic.parameters(), lr=args.critic_lr)
policy: DDPGPolicy = DDPGPolicy(
actor=actor,
actor_optim=actor_optim,
critic=critic,
critic_optim=critic_optim,
tau=args.tau,
gamma=args.gamma,
exploration_noise=GaussianNoise(sigma=args.exploration_noise),
estimation_step=args.n_step,
action_space=env.action_space,
)
# load a previous policy
if args.resume_path:
policy.load_state_dict(torch.load(args.resume_path, map_location=args.device))
print("Loaded agent from: ", args.resume_path)
# collector
buffer: VectorReplayBuffer | ReplayBuffer
if args.training_num > 1:
buffer = VectorReplayBuffer(args.buffer_size, len(train_envs))
else:
buffer = ReplayBuffer(args.buffer_size)
train_collector = Collector[CollectStats](policy, train_envs, buffer, exploration_noise=True)
test_collector = Collector[CollectStats](policy, test_envs)
train_collector.reset()
train_collector.collect(n_step=args.start_timesteps, random=True)
# log
now = datetime.datetime.now().strftime("%y%m%d-%H%M%S")
args.algo_name = "ddpg"
log_name = os.path.join(args.task, args.algo_name, str(args.seed), now)
log_path = os.path.join(args.logdir, log_name)
# logger
logger_factory = LoggerFactoryDefault()
if args.logger == "wandb":
logger_factory.logger_type = "wandb"
logger_factory.wandb_project = args.wandb_project
else:
logger_factory.logger_type = "tensorboard"
logger = logger_factory.create_logger(
log_dir=log_path,
experiment_name=log_name,
run_id=args.resume_id,
config_dict=vars(args),
)
def save_best_fn(policy: BasePolicy) -> None:
torch.save(policy.state_dict(), os.path.join(log_path, "policy.pth"))
if not args.watch:
# trainer
result = OffpolicyTrainer(
policy=policy,
train_collector=train_collector,
test_collector=test_collector,
max_epoch=args.epoch,
step_per_epoch=args.step_per_epoch,
step_per_collect=args.step_per_collect,
episode_per_test=args.test_num,
batch_size=args.batch_size,
save_best_fn=save_best_fn,
logger=logger,
update_per_step=args.update_per_step,
test_in_train=False,
).run()
pprint.pprint(result)
# Let's watch its performance!
test_envs.seed(args.seed)
test_collector.reset()
collector_stats = test_collector.collect(n_episode=args.test_num, render=args.render)
print(collector_stats)
if __name__ == "__main__":
test_ddpg()