-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdataset.py
199 lines (156 loc) · 6.57 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
# Copyright 2022 The VDM Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Dataset loader and processor."""
from typing import Tuple
from clu import deterministic_data
import jax
import tensorflow as tf
import tensorflow_datasets as tfds
AUTOTUNE = tf.data.experimental.AUTOTUNE
def create_dataset(config, data_rng):
data_rng = jax.random.fold_in(data_rng, jax.process_index())
rng1, rng2 = jax.random.split(data_rng)
if config.data.dataset == "cifar10":
_, train_ds = create_train_dataset(
"cifar10", config.training.batch_size_train, config.training.substeps, rng1, _preprocess_cifar10
)
_, eval_ds = create_eval_dataset("cifar10", config.training.batch_size_eval, "test", rng2, _preprocess_cifar10)
elif config.data.dataset == "cifar10_aug":
_, train_ds = create_train_dataset(
"cifar10", config.training.batch_size_train, config.training.substeps, rng1, _preprocess_cifar10_augment
)
_, eval_ds = create_eval_dataset("cifar10", config.training.batch_size_eval, "test", rng2, _preprocess_cifar10)
elif config.data.dataset == "cifar10_aug_with_channel":
_, train_ds = create_train_dataset(
"cifar10",
config.training.batch_size_train,
config.training.substeps,
rng1,
_preprocess_cifar10_augment_with_channel_flip,
)
_, eval_ds = create_eval_dataset("cifar10", config.training.batch_size_eval, "test", rng2, _preprocess_cifar10)
elif config.data.dataset == "imagenet32":
if config.data.new:
from imagenet32_new import DownsampledImagenetNew
name = "downsampled_imagenet_new/32x32"
else:
name = "downsampled_imagenet/32x32"
_, train_ds = create_train_dataset(
name, config.training.batch_size_train, config.training.substeps, rng1, _preprocess_cifar10
)
_, eval_ds = create_eval_dataset(name, config.training.batch_size_eval, "validation", rng2, _preprocess_cifar10)
else:
raise Exception("Unrecognized config.data.dataset")
return iter(train_ds), iter(eval_ds)
def create_train_dataset(
task: str, batch_size: int, substeps: int, data_rng, preprocess_fn
) -> Tuple[tfds.core.DatasetInfo, tf.data.Dataset]:
"""Create datasets for training."""
# Compute batch size per device from global batch size..
if batch_size % jax.device_count() != 0:
raise ValueError(
f"Batch size ({batch_size}) must be divisible by " f"the number of devices ({jax.device_count()})."
)
per_device_batch_size = batch_size // jax.device_count()
dataset_builder = tfds.builder(task)
dataset_builder.download_and_prepare()
train_split = deterministic_data.get_read_instruction_for_host(
"train", dataset_builder.info.splits["train"].num_examples
)
batch_dims = [jax.local_device_count(), substeps, per_device_batch_size]
train_ds = deterministic_data.create_dataset(
dataset_builder,
split=train_split,
num_epochs=None,
shuffle=True,
batch_dims=batch_dims,
preprocess_fn=preprocess_fn,
prefetch_size=tf.data.experimental.AUTOTUNE,
rng=data_rng,
)
return dataset_builder.info, train_ds
def create_eval_dataset(
task: str, batch_size: int, subset: str, data_rng, preprocess_fn
) -> Tuple[tfds.core.DatasetInfo, tf.data.Dataset]:
if batch_size % jax.device_count() != 0:
raise ValueError(
f"Batch size ({batch_size}) must be divisible by " f"the number of devices ({jax.device_count()})."
)
per_device_batch_size = batch_size // jax.device_count()
dataset_builder = tfds.builder(task)
eval_split = deterministic_data.get_read_instruction_for_host(
subset, dataset_builder.info.splits[subset].num_examples
)
batch_dims = [jax.local_device_count(), per_device_batch_size]
eval_ds = deterministic_data.create_dataset(
dataset_builder,
split=eval_split,
num_epochs=None,
shuffle=True,
batch_dims=batch_dims,
preprocess_fn=preprocess_fn,
prefetch_size=tf.data.experimental.AUTOTUNE,
rng=data_rng,
)
return dataset_builder.info, eval_ds
def _preprocess_cifar10(features):
"""Helper to extract images from dict."""
conditioning = tf.zeros((), dtype="uint8")
return {"images": features["image"], "conditioning": conditioning}
def _preprocess_cifar10_augment(features):
img = features["image"]
img = tf.cast(img, "float32")
# random left/right flip
_img = tf.image.flip_left_right(img)
aug = tf.random.uniform(shape=[]) > 0.5
img = tf.where(aug, _img, img)
# random 90 degree rotations
u = tf.random.uniform(shape=[])
k = tf.cast(tf.math.ceil(3.0 * u), tf.int32)
_img = tf.image.rot90(img, k=k)
_aug = tf.random.uniform(shape=[]) > 0.5
img = tf.where(_aug, _img, img)
aug = aug | _aug
if False:
_img = tf.transpose(img, [2, 0, 1])
_img = tf.random.shuffle(_img)
_img = tf.transpose(_img, [1, 2, 0])
_aug = tf.random.uniform(shape=[]) > 0.5
img = tf.where(_aug, _img, img)
aug = aug | _aug
aug = tf.cast(aug, "uint8")
return {"images": img, "conditioning": aug}
def _preprocess_cifar10_augment_with_channel_flip(features):
img = features["image"]
img = tf.cast(img, "float32")
# random left/right flip
_img = tf.image.flip_left_right(img)
aug = tf.random.uniform(shape=[]) > 0.5
img = tf.where(aug, _img, img)
# random 90 degree rotations
u = tf.random.uniform(shape=[])
k = tf.cast(tf.math.ceil(3.0 * u), tf.int32)
_img = tf.image.rot90(img, k=k)
_aug = tf.random.uniform(shape=[]) > 0.5
img = tf.where(_aug, _img, img)
aug = aug | _aug
# random color channel flips
_img = tf.transpose(img, [2, 0, 1])
_img = tf.random.shuffle(_img)
_img = tf.transpose(_img, [1, 2, 0])
_aug = tf.random.uniform(shape=[]) > 0.5
img = tf.where(_aug, _img, img)
aug = aug | _aug
aug = tf.cast(aug, "uint8")
return {"images": img, "conditioning": aug}