-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel.py
151 lines (117 loc) · 5.09 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
class GaussianFourierProjection(nn.Module):
"""Gaussian random features for encoding time steps."""
def __init__(self, embed_dim, scale=30.):
super().__init__()
# Randomly sample weights during initialization. These weights are fixed
# during optimization and are not trainable.
self.W = nn.Parameter(torch.randn(embed_dim // 2) * scale, requires_grad=False)
def forward(self, x):
x_proj = x[..., None] * self.W[None, :] * 2 * np.pi
return torch.cat([torch.sin(x_proj), torch.cos(x_proj)], dim=-1)
def mlp(dims, activation=nn.ReLU, output_activation=None):
n_dims = len(dims)
assert n_dims >= 2, 'MLP requires at least two dims (input and output)'
layers = []
for i in range(n_dims - 2):
layers.append(nn.Linear(dims[i], dims[i+1]))
layers.append(activation())
layers.append(nn.Linear(dims[-2], dims[-1]))
if output_activation is not None:
layers.append(output_activation())
net = nn.Sequential(*layers)
net.to(dtype=torch.float32)
return net
class TwinQ(nn.Module):
def __init__(self, action_dim, state_dim, layers=2):
super().__init__()
dims = [state_dim + action_dim] +[256]*layers +[1]
# dims = [state_dim + action_dim, 256, 256, 1] # TODO
self.q1 = mlp(dims)
self.q2 = mlp(dims)
def both(self, action, condition=None):
as_ = torch.cat([action, condition], -1) if condition is not None else action
return self.q1(as_), self.q2(as_)
def forward(self, action, condition=None):
return torch.min(*self.both(action, condition))
class ValueFunction(nn.Module):
def __init__(self, state_dim):
super().__init__()
dims = [state_dim, 256, 256, 1]
self.v = mlp(dims)
def forward(self, state):
return self.v(state)
class Dirac_Policy(nn.Module):
def __init__(self, action_dim, state_dim, layer=2):
super().__init__()
self.net = mlp([state_dim] + [256]*layer + [action_dim], output_activation=nn.Tanh)
def forward(self, state):
return self.net(state)
def select_actions(self, state):
return self(state)
class MLPResNetBlock(nn.Module):
"""MLPResNet block."""
def __init__(self, features, act, dropout_rate=None, use_layer_norm=False):
super(MLPResNetBlock, self).__init__()
self.features = features
self.act = act
self.dropout_rate = dropout_rate
self.use_layer_norm = use_layer_norm
if self.use_layer_norm:
self.layer_norm = nn.LayerNorm(features)
self.fc1 = nn.Linear(features, features * 4)
self.fc2 = nn.Linear(features * 4, features)
self.residual = nn.Linear(features, features)
self.dropout = nn.Dropout(dropout_rate) if dropout_rate is not None and dropout_rate > 0.0 else None
def forward(self, x, training=False):
residual = x
if self.dropout is not None:
x = self.dropout(x)
if self.use_layer_norm:
x = self.layer_norm(x)
x = self.fc1(x)
x = self.act(x)
x = self.fc2(x)
if residual.shape != x.shape:
residual = self.residual(residual)
return residual + x
class MLPResNet(nn.Module):
def __init__(self, num_blocks, input_dim, out_dim, dropout_rate=None, use_layer_norm=False, hidden_dim=256, activations=F.relu):
super(MLPResNet, self).__init__()
self.num_blocks = num_blocks
self.out_dim = out_dim
self.dropout_rate = dropout_rate
self.use_layer_norm = use_layer_norm
self.hidden_dim = hidden_dim
self.activations = activations
self.fc = nn.Linear(input_dim+128, self.hidden_dim)
self.blocks = nn.ModuleList([MLPResNetBlock(self.hidden_dim, self.activations, self.dropout_rate, self.use_layer_norm)
for _ in range(self.num_blocks)])
self.out_fc = nn.Linear(self.hidden_dim, self.out_dim)
def forward(self, x, training=False):
x = self.fc(x)
for block in self.blocks:
x = block(x, training=training)
x = self.activations(x)
x = self.out_fc(x)
return x
class ScoreNet_IDQL(nn.Module):
def __init__(self, input_dim, output_dim, marginal_prob_std, embed_dim=64, args=None):
super().__init__()
self.output_dim = output_dim
self.embed = nn.Sequential(GaussianFourierProjection(embed_dim=embed_dim))
self.device=args.device
self.marginal_prob_std = marginal_prob_std
self.args=args
self.main = MLPResNet(args.actor_blocks, input_dim, output_dim, dropout_rate=0.1, use_layer_norm=True, hidden_dim=256, activations=nn.Mish())
self.cond_model = mlp([64, 128, 128], output_activation=None, activation=nn.Mish)
# The swish activation function
# self.act = lambda x: x * torch.sigmoid(x)
def forward(self, x, t, condition):
embed = self.cond_model(self.embed(t))
all = torch.cat([x, condition, embed], dim=-1)
h = self.main(all)
return h