-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutilities.py
320 lines (234 loc) · 6.71 KB
/
utilities.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
#!/usr/bin/env python
# -*- coding: UTF-8 -*-
import matplotlib.pyplot as plt
import numpy as np
from os import path
import sys
from networkx import to_numpy_matrix
import resource
def askToSaveFig(name,fig):
answer = raw_input("Save as {name}? (y/n)".format(name=name))
if answer=='Y' or answer=='Yes' or answer=='y':
fig.savefig(name)
return
def getMetaDict(f):
meta = str(f['metadata'])
meta_dict = {pair.split(':')[0]:pair.split(':')[1] for pair in meta.split(';')}
return meta_dict
def getPmax(f):
meta_dict = getMetaDict(f)
P_max = float(meta_dict['U'])**2/float(meta_dict['Ri'])/4
return P_max
def typical_length(sig):
sig = sig.astype(float)
sig -= sig.mean()
sig /= sig.ptp()
ffted = np.fft.fft(sig)
dom = np.argmax(ffted[:len(ffted)/2])
freq = np.fft.fftfreq(len(sig))
if dom==0:
typ = np.inf
else:
typ = 1/freq[dom]
return typ,abs(ffted[dom])*2/len(sig)
def compose_beh_matrix(con):
matrix = []
for idx,agent in enumerate(con._agents):
decisions = agent.decision
if isinstance(decisions[-1],basestring):
decisions = np.array([1 if d=='c' else (d=='0')-1 for d in decisions]) #"c"==1 "d"==-1 "0"==0
else:
decisions = np.array(decisions)
matrix.append(decisions)
return np.array(matrix)
def collect_appliances(con):
appliances = []
for idx,agent in enumerate(con._agents):
appliances.append(agent._k_que)
t = np.arange(len(con._agents[0]._k_que))
appliances = np.array(appliances)
return appliances,t
def collect_power(con):
P_list = []
for idx,agent in enumerate(con._agents):
P_list.append(agent._P_que)
P_all = np.array(P_list)
time = np.arange(len(con._agents[0]._P_que))
return P_all,time
def collect_exp_P(con):
P_list = []
for idx,agent in enumerate(con._agents):
P_list.append(agent._exp_P_que)
P_all = np.array(P_list)
time = np.arange(len(con._agents[0]._exp_P_que))
return P_all,time
def save(con,data,filename=None):
from subprocess import Popen, PIPE
from sys import argv
import datetime
from os import path
kwargs = {}
kwargs['beh_matrix'] = compose_beh_matrix(con)
appliances,t = collect_appliances(con)
kwargs['appliances'] = appliances
kwargs['t'] = t
P_all,t = collect_power(con)
kwargs['P_all'] = P_all
kwargs['P_global'] = np.array(con._global_P)
kwargs['selfish'] = np.array([a.s for a in con._agents])
kwargs['graph'] = np.array(to_numpy_matrix(con._G))
if hasattr(con._agents[0],'_exp_P_que'):
P_exp,t = collect_exp_P(con)
kwargs['P_exp'] = P_exp
data['file']=argv[0]
if filename is None:
date_str = datetime.datetime.now().isoformat().replace(':','-')
filename = '{}-{}.npz'.format(data['file'][:-3],date_str)
keywords = []
for name,value in data.iteritems():
keywords.append("{}:{}".format(name,value))
keywords = ";".join(keywords)
kwargs['metadata'] = keywords
if sys.platform != 'darwin':
filename = "/".join((path.expandvars('$WRKDIR'),filename))
root,extension = path.splitext(filename)
test_filename = filename
i = 0
while path.exists(test_filename):
test_filename = "{}_{}{}".format(root,i,extension)
i+=1
filename=test_filename
print 'save as ',filename
np.savez_compressed(filename,**kwargs)
def downsample(x):
def ds_one_dim(x):
if len(x)<1000:
return x
else:
R = int(np.floor(len(x)/1000.0))
slices = len(x)/R # note this is an integer division
return x[:slices*R].reshape(-1, R).mean(axis=1) # we ignore the overhang
x = np.array(x)
if x.ndim>1:
n = x.shape[0]
else:
return ds_one_dim(x)
ds_x = []
for i in range(n):
ds_x.append(ds_one_dim(x[i,:]))
return np.array(ds_x)
def plot_appliances_aggregate(x,time=None):
import seaborn as sns
if isinstance(x,np.ndarray):
appliances = x
else:
appliances,time = collect_appliances(x)
time = downsample(time)
appliances = downsample(appliances)
sns.tsplot(appliances,time=time)
plt.xlabel("steps")
plt.ylabel("appliances")
def plot_appl_matrix(x):
if isinstance(x,np.ndarray):
matrix = x
else:
matrix,t = collect_appliances(x)
high = np.max(matrix)
print high
image = matrix/float(high)*255
image = image.astype(np.uint8)
image = np.dstack([image,image,image])
plt.imshow(image,aspect="auto",interpolation='nearest')
plt.xlabel("steps")
plt.ylabel("agent")
plt.grid('off')
return image
def plot_behavior(x):
if isinstance(x,np.ndarray):
matrix = x
else:
matrix = compose_beh_matrix(x)
image_r = np.zeros(matrix.shape,dtype=np.uint8)
image_g = np.zeros(matrix.shape,dtype=np.uint8)
image_b = np.zeros(matrix.shape,dtype=np.uint8)
# make cooperation white
image_r[matrix==1]=255
image_g[matrix==1]=255
image_b[matrix==1]=255
# make defection red
image_r[matrix==-1]=165
image_g[matrix==-1]=80
image_b[matrix==-1]=80
# make don‘t care black
image_r[matrix==0]=0
image_g[matrix==0]=0
image_b[matrix==0]=0
# make don‘t care black
image_r[matrix==-2]=0
image_g[matrix==-2]=255
image_b[matrix==-2]=255
image = np.dstack([image_r,image_g,image_b])
plt.imshow(image,aspect="auto",interpolation='nearest')
plt.xlabel("steps")
plt.ylabel("agent")
plt.grid('off')
return image
def plot_power_usage(x,time=None):
if isinstance(x,np.ndarray):
P = x
else:
time = np.arange(len(x._global_P))
time = downsample(time)
P = downsample(x._global_P)
plt.plot(time,P)
plt.xlabel("steps")
plt.ylabel("power")
def plot_agent_power(x,time=None):
import seaborn as sns
if isinstance(x,np.ndarray):
P_all=x
else:
P_all,time = collect_power(x)
P_all = downsample(P_all)
time = downsample(time)
sns.tsplot(P_all,time=time, err_style="unit_traces", err_palette=sns.dark_palette("crimson", len(P_all)), color="k");
plt.xlabel("steps")
plt.ylabel("P")
return P_all
def plot_agent_expected(x,time=None):
import seaborn as sns
if isinstance(x,np.ndarray):
P_all=x
else:
P_all,time = collect_power(x)
P_all = downsample(P_all)
time = downsample(time)
x = downsample(x)
sns.tsplot(P_all,time=x, err_style="unit_traces", err_palette=sns.dark_palette("crimson", len(P_all)), color="k");
plt.xlabel("steps")
plt.ylabel("expected_dP")
return P_all
def gini_coeff(x):
x = x.copy()
x += x.min()
xsort = np.sort(x)
l = float(len(x))
return 2*np.sum(xsort*np.arange(1,l+1))/(xsort.sum()*l) - (l+1)/l
def using(point=""):
usage=resource.getrusage(resource.RUSAGE_SELF)
return '''%s: usertime=%s systime=%s mem=%s mb
'''%(point,usage[0],usage[1],
(usage[2]*resource.getpagesize())/1000000.0 )
def reduce_multiple_measurements(x_points,y_points,func=np.median):
point_dict = dict()
for x,y in zip(x_points,y_points):
if x in point_dict:
point_dict[x].append(y)
else:
point_dict[x]=[y]
new_x = []
new_y = []
for key in sorted(point_dict.keys()):
new_x.append(key)
new_y.append(func(point_dict[key]))
return np.array(new_x),np.array(new_y)