-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmpi_result_plot.py
87 lines (65 loc) · 2.31 KB
/
mpi_result_plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
#!/usr/bin/env python
# -*- coding: UTF-8 -*-
from utilities import *
from image_database import saveFiguesWithData
from sys import argv, exit
from numpy import load
import argparse
import seaborn as sns
from os import path as pathtools
parser = argparse.ArgumentParser(description='process data from cluster')
parser.add_argument('file',help="what file to work on",nargs='*')
parser.add_argument('-m','--metadata',action='store_true',help="print only metadata")
parser.add_argument('-s','--save',action='store_true',help="save images to dropbox")
parser.add_argument('--save_only',action='store_true',help="save images to dropbox, do not show on screen")
parser.add_argument('-p','--save_path',help="override the dafault save path")
args = parser.parse_args()
for filename in args.file:
f = load(filename)
print filename
meta = str(f['metadata'])
meta = meta.replace(';','\n')
print meta
if args.metadata:
exit()
plt.close("all")
figs = {}
fig_k = plt.figure()
plot_appliances_aggregate(f['appliances'],f['t'])
figs['appliances']=fig_k
fig_behaviour = plt.figure(figsize=(12,6))
matrix = plot_behavior(f['beh_matrix'])
figs['behavior']=fig_behaviour
agent_power = plt.figure()
plot_agent_power(f['P_all'],f['t'][1:])
figs['agent_power']=agent_power
overall_power = plt.figure()
plot_power_usage(f['P_global'],f['t'][1:])
figs['overall_power']=overall_power
plt.figure()
plot_appl_matrix(f['appliances'])
plt.figure()
matrix = f['appliances']
app = downsample(matrix)
time = downsample(f['t'])
sns.tsplot(app,time=time, err_style="unit_traces", err_palette=sns.dark_palette("crimson", len(app)), color="k");
plt.xlabel('time')
plt.ylabel('app')
plt.figure()
s = f['selfish']
plt.plot(s)
plt.ylim([0,1])
plt.xlabel('agent')
plt.ylabel('selfishness')
meta = str(f['metadata'])
meta_dict = {pair.split(':')[0]:pair.split(':')[1] for pair in meta.split(';')}
P_max = float(meta_dict['U'])**2/float(meta_dict['Ri'])/4
p_matrix = f['P_all']
sum_P = np.mean(p_matrix,axis=1)
p_equal = P_max/float(p_matrix.shape[0])
print "p_equal", p_equal, "P_max", P_max, "ptp", np.ptp(sum_P-p_equal), "gini",gini_coeff(sum_P)
if args.save or args.save_only:
path = args.save_path
saveFiguesWithData(path, figs, str(f['metadata']),prefix=pathtools.basename(filename)[:-4])
if not(args.save_only):
plt.show()