forked from ibab/tensorflow-wavenet
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
executable file
·465 lines (373 loc) · 14.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
"""Training script for the WaveNet network on the VCTK corpus.
This script trains a network with the WaveNet using data from the VCTK corpus,
which can be freely downloaded at the following site (~10 GB):
http://homepages.inf.ed.ac.uk/jyamagis/page3/page58/page58.html
"""
from __future__ import print_function
import argparse
from datetime import datetime
import json
import os
import sys
import time
# Install memory_util
#from urllib2 import urlopen
#response = urlopen("https://raw.githubusercontent.com/yaroslavvb/memory_util/master/memory_util.py")
#open("memory_util.py", "wb").write(response.read())
#
#import memory_util
#memory_util.vlog(1)
# End install
import tensorflow as tf
from tensorflow.python.client import timeline
from wavenet import WaveNetModel,LCAudioReader, optimizer_factory
BATCH_SIZE = 1
LOGDIR_ROOT = './logdir'
DATA_DIR = None
CHECKPOINT_EVERY = 50
NUM_STEPS = int(1e5)
LEARNING_RATE = 1e-3
WAVENET_PARAMS = './wavenet_params.json'
STARTED_DATESTRING = "{0:%Y-%m-%dT%H-%M-%S}".format(datetime.now())
SAMPLE_SIZE = 100000
L2_REGULARIZATION_STRENGTH = 0
SILENCE_THRESHOLD = None
EPSILON = 0.001
MOMENTUM = 0.9
MAX_TO_KEEP = 5
METADATA = False
def get_arguments():
parser = argparse.ArgumentParser(description = 'WaveNet example network')
parser.add_argument('--batch-size',
type = int,
default = BATCH_SIZE,
help = 'How many wav files to process at once. Default: ' + str(BATCH_SIZE) + '.')
parser.add_argument('--data-dir',
type = str,
default = DATA_DIR,
help = 'The directory containing training WAV data and any LC files if LC enabled. Default: None. Expects: path')
parser.add_argument('--store-metadata',
type = bool,
default = METADATA,
help = 'Whether to store advanced debugging information '
'(execution time, memory consumption) for use with '
'TensorBoard. Default: ' + str(METADATA) + '.')
parser.add_argument('--logdir',
type = str,
default = None,
help = 'Directory in which to store the logging '
'information for TensorBoard. '
'If the model already exists, it will restore '
'the state and will continue training. '
'Cannot use with --logdir_root and --restore_from.')
parser.add_argument('--logdir-root',
type = str,
default = None,
help = 'Root directory to place the logging '
'output and generated model. These are stored '
'under the dated subdirectory of --logdir_root. '
'Cannot use with --logdir.')
parser.add_argument('--restore-from',
type = str,
default = None,
help = 'Directory in which to restore the model from. '
'This creates the new model under the dated directory '
'in --logdir_root. '
'Cannot use with --logdir.')
parser.add_argument('--checkpoint-every',
type = int,
default = CHECKPOINT_EVERY,
help = 'How many steps to save each checkpoint after. Default: ' + str(CHECKPOINT_EVERY) + '.')
parser.add_argument('--num-steps',
type = int,
default = NUM_STEPS,
help = 'Number of training steps. Default: ' + str(NUM_STEPS) + '. Expects: int')
parser.add_argument('--learning-rate',
type = float,
default = LEARNING_RATE,
help = 'Learning rate for training. Default: ' + str(LEARNING_RATE) + '. Expects: float32')
parser.add_argument('--wavenet-params',
type = str,
default = WAVENET_PARAMS,
help = 'JSON file with the network parameters. Default: ' + WAVENET_PARAMS + '. Expects: string')
parser.add_argument('--sample-size',
type = int,
default = SAMPLE_SIZE,
help = 'Concatenate and cut audio samples to this many '
'samples. Default: ' + str(SAMPLE_SIZE) + '. Expects: int')
parser.add_argument('--l2-regularization-strength',
type = float,
default = L2_REGULARIZATION_STRENGTH,
help = 'Coefficient in the L2 regularization. '
'Default: False. Expects: float32')
parser.add_argument('--silence-threshold',
type = float,
default = SILENCE_THRESHOLD,
help = 'Volume threshold below which to trim the start '
'and the end from the training set samples. Default: ' + str(SILENCE_THRESHOLD) + '. Expects: int')
parser.add_argument('--optimizer',
type = str,
default = 'adam',
choices = optimizer_factory.keys(),
help = 'Select the optimizer specified by this option. Default: adam. Expects: string')
parser.add_argument('--momentum',
type = float,
default = MOMENTUM,
help = 'Specify the momentum to be '
'used by sgd or rmsprop optimizer. Ignored by the '
'adam optimizer. Default: ' + str(MOMENTUM) + '. Expects: float32')
parser.add_argument('--histograms',
action = 'store_true',
help = 'Whether to store histogram summaries. Default: False')
parser.add_argument('--gc-channels',
type = int,
default = None,
help = 'Number of global condition channels. Default: None. Expecting: int')
parser.add_argument('--initial-lc-channels',
type = int,
default = None,
help = "Number of local conditioning channels. Default: None. Expecting: int")
parser.add_argument('--lc-channels',
type = int,
default = None,
help = "Number of local conditioning channels. Default: None. Expecting: int")
parser.add_argument('--lc-fileformat',
type = str,
default = None,
help = "Extension of files being used for local conditioning. Default: None. Expecting: string")
parser.add_argument('--max-checkpoints',
type = int,
default = MAX_TO_KEEP,
help = 'Maximum amount of checkpoints that will be kept alive. Default: ' + str(MAX_TO_KEEP) + '.')
return parser.parse_args()
def save(saver, sess, logdir, step):
# TODO: Make this model name such that its name is $(hyper_param_string).ckpt
model_name = 'model.ckpt'
checkpoint_path = os.path.join(logdir, model_name)
print('Storing checkpoint to {} ... '.format(logdir))
if not os.path.exists(logdir):
os.makedirs(logdir)
saver.save(sess, checkpoint_path, global_step = step)
print('Done.')
def load(saver, sess, logdir):
print("Trying to restore saved checkpoints from {} ...".format(logdir), end = "")
ckpt = tf.train.get_checkpoint_state(logdir)
if ckpt:
print(" Checkpoint found: {}".format(ckpt.model_checkpoint_path))
global_step = int(ckpt.model_checkpoint_path
.split('/')[-1]
.split('-')[-1])
print(" Global step was: {}".format(global_step))
print(" Restoring...", end="")
saver.restore(sess, ckpt.model_checkpoint_path)
print(" Done.")
return global_step
else:
print(" No checkpoint found.")
return None
def get_default_logdir(logdir_root):
logdir = os.path.join(logdir_root, 'train', STARTED_DATESTRING)
return logdir
def validate_directories(args):
"""Validate and arrange directory related arguments."""
# Validation
if args.logdir and args.logdir_root:
raise ValueError("--logdir and --logdir_root cannot be "
"specified at the same time.")
if args.logdir and args.restore_from:
raise ValueError(
"--logdir and --restore_from cannot be specified at the same "
"time. This is to keep your previous model from unexpected "
"overwrites.\n"
"Use --logdir_root to specify the root of the directory which "
"will be automatically created with current date and time, or use "
"only --logdir to just continue the training from the last "
"checkpoint.")
# Arrangement
logdir_root = args.logdir_root
if logdir_root is None:
logdir_root = LOGDIR_ROOT
logdir = args.logdir
if logdir is None:
logdir = get_default_logdir(logdir_root)
print('Using default logdir: {}'.format(logdir))
restore_from = args.restore_from
if restore_from is None:
# args.logdir and args.restore_from are exclusive,
# so it is guaranteed the logdir here is newly created.
restore_from = logdir
return {
'logdir': logdir,
'logdir_root': args.logdir_root,
'restore_from': restore_from
}
def main():
args = get_arguments()
try:
directories = validate_directories(args)
except ValueError as e:
print("Some arguments are wrong:")
print(str(e))
return
logdir = directories['logdir']
restore_from = directories['restore_from']
# Even if we restored the model, we will treat it as new training
# if the trained model is written into an arbitrary location.
is_overwritten_training = logdir != restore_from
with open(args.wavenet_params, 'r') as f:
wavenet_params = json.load(f)
# Create coordinator.
coord = tf.train.Coordinator()
# create session
sess = tf.Session(config = tf.ConfigProto(log_device_placement = False))
# Load raw waveform from VCTK corpus.
with tf.name_scope('create_inputs'):
# Allow silence trimming to be skipped by specifying a threshold near
# zero.
if args.silence_threshold is None:
silence_threshold = None
else:
silence_threshold = args.silence_threshold \
if args.silence_threshold > EPSILON \
else None
gc_enabled = args.gc_channels is not None
lc_enabled = args.lc_channels is not None
initial_lc_channels = args.initial_lc_channels if lc_enabled else None
lc_channels = args.lc_channels if lc_enabled else None
lc_fileformat = args.lc_fileformat if lc_enabled else None
if lc_enabled and initial_lc_channels is None:
raise ValueError("Inital LC channels must be specified when local conditioning is enabled.")
# LC channels are non-zero but no format is specifid
if lc_enabled and args.lc_fileformat is None:
raise ValueError("LC file format must be specified when local conditioning is enabled.")
if args.lc_fileformat is not None and not lc_enabled:
raise ValueError("LC channels have to be set when a LC file format is specified.")
reader = LCAudioReader(data_dir = args.data_dir,
coord = coord,
receptive_field = WaveNetModel.calculate_receptive_field(
wavenet_params["filter_width"],
wavenet_params["dilations"],
wavenet_params["scalar_input"],
wavenet_params["initial_filter_width"]),
gc_enabled = gc_enabled,
lc_enabled = lc_enabled,
lc_channels = initial_lc_channels,
lc_fileformat = args.lc_fileformat,
sample_rate = wavenet_params['sample_rate'],
sample_size = args.sample_size,
silence_threshold = silence_threshold,
sess = sess)
# dequeue audio samples
audio_batch = reader.dq_audio(args.batch_size)
# dequeue gc embeddings
if gc_enabled:
gc_id_batch = reader.dq_gc(args.batch_size)
else:
gc_id_batch = None
# dequeue lc embeddings
if lc_enabled:
lc_encoded_batch = reader.dq_lc(args.batch_size)
else:
lc_encoded_batch = None
# Create network.
net = WaveNetModel(
batch_size = args.batch_size,
dilations = wavenet_params["dilations"],
filter_width = wavenet_params["filter_width"],
residual_channels = wavenet_params["residual_channels"],
dilation_channels = wavenet_params["dilation_channels"],
skip_channels = wavenet_params["skip_channels"],
quantization_channels = wavenet_params["quantization_channels"],
use_biases = wavenet_params["use_biases"],
scalar_input = wavenet_params["scalar_input"],
initial_filter_width = wavenet_params["initial_filter_width"],
histograms = args.histograms,
gc_channels = args.gc_channels,
gc_cardinality = reader.get_gc_cardinality(),
initial_lc_channels = initial_lc_channels,
lc_channels = lc_channels)
if args.l2_regularization_strength == 0:
args.l2_regularization_strength = None
# create loss
loss = net.loss(input_batch = audio_batch,
gc_batch = gc_id_batch,
lc_encoded_batch = lc_encoded_batch,
l2_regularization_strength = args.l2_regularization_strength)
# create optimizer
optimizer = optimizer_factory[args.optimizer](
learning_rate = args.learning_rate,
momentum = args.momentum)
# set up optimizer with trainable vars
trainable = tf.trainable_variables()
optim = optimizer.minimize(loss, var_list = trainable)
# set up logging for TensorBoard.
writer = tf.summary.FileWriter(logdir)
writer.add_graph(tf.get_default_graph())
run_metadata = tf.RunMetadata()
summaries = tf.summary.merge_all()
# set up session initial state
init = tf.global_variables_initializer()
# with memory_util.capture_stderr() as stderr:
sess.run(init)
saved_vars = [v.name for v in tf.global_variables()]
json.dump(saved_vars, open(os.path.join(logdir, 'saved_vars.txt'), 'w'))
# memory_util.print_memory_timeline(stderr, ignore_less_than_bytes=1000)
# saver for storing checkpoints of the model.
# saver = tf.train.Saver(var_list = tf.trainable_variables(), max_to_keep = args.max_checkpoints)
saver = tf.train.Saver( max_to_keep = args.max_checkpoints)
# try loading pre-existing model
try:
saved_global_step = load(saver, sess, restore_from)
if is_overwritten_training or saved_global_step is None:
# The first training step will be saved_global_step + 1,
# therefore we put -1 here for new or overwritten trainings.
saved_global_step = -1
except:
print("Something went wrong while restoring checkpoint. "
"We will terminate training to avoid accidentally overwriting "
"the previous model.")
raise
# start audio reader threads
threads = tf.train.start_queue_runners(sess = sess, coord = coord)
reader.start_threads()
step = None
last_saved_step = saved_global_step
try:
for step in range(saved_global_step + 1, args.num_steps):
start_time = time.time()
if args.store_metadata and step % 50 == 0:
# Slow run that stores extra information for debugging.
print('Storing metadata')
run_options = tf.RunOptions(
trace_level = tf.RunOptions.FULL_TRACE)
summary, loss_value, _ = sess.run(
[summaries, loss, optim],
options = run_options,
run_metadata = run_metadata)
writer.add_summary(summary, step)
writer.add_run_metadata(run_metadata,
'step_{:04d}'.format(step))
tl = timeline.Timeline(run_metadata.step_stats)
timeline_path = os.path.join(logdir, 'timeline.trace')
with open(timeline_path, 'w') as f:
f.write(tl.generate_chrome_trace_format(show_memory = True))
else:
summary, loss_value, _ = sess.run([summaries, loss, optim])
writer.add_summary(summary, step)
duration = time.time() - start_time
print('step {:d} - loss = {:.3f}, ({:.3f} sec/step)'
.format(step, loss_value, duration))
if step % args.checkpoint_every == 0:
save(saver, sess, logdir, step)
last_saved_step = step
except KeyboardInterrupt:
# Introduce a line break after ^C is displayed so save message
# is on its own line.
print()
finally:
if step > last_saved_step:
save(saver, sess, logdir, step)
coord.request_stop()
coord.join(threads)
if __name__ == '__main__':
main()