generated from pitmonticone/LeanProject
-
Notifications
You must be signed in to change notification settings - Fork 67
/
Copy pathCounting.lean
85 lines (71 loc) · 2.87 KB
/
Counting.lean
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
/-
Copyright (c) 2022 Julian Kuelshammer. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
-/
import equational_theories.FreeMagma
import Mathlib.Combinatorics.Enumerative.Catalan
variable {X : Type*}
namespace FreeMagma
def order : FreeMagma X → ℕ
| Lf _ => 0
| a ⋆ b => order a + order b + 1
@[simp]
lemma order_leaf (a : X) : (Lf a).order = 0 := rfl
@[simp]
lemma order_fork (a b : FreeMagma X) : (a ⋆ b).order = a.order + b.order + 1 := rfl
-- Compare to `Tree.pairwiseNode`
abbrev pairwiseFork (a b : Finset (FreeMagma X)) : Finset (FreeMagma X) :=
(a ×ˢ b).map ⟨fun ⟨x, y⟩ ↦ x ⋆ y, fun ⟨a, b⟩ ⟨c, d⟩ ↦ by simp⟩
variable (X) [Fintype X] [DecidableEq X]
-- Compare to `Tree.treesOfNumNodesEq`
def elementsOfNumNodesEq : ℕ → Finset (FreeMagma X)
| 0 => Finset.univ.map ⟨Lf, fun a b h ↦ by simpa using h⟩
| n + 1 =>
(Finset.antidiagonal n).attach.biUnion fun ijh =>
pairwiseFork (elementsOfNumNodesEq ijh.1.1) (elementsOfNumNodesEq ijh.1.2)
-- Porting note: Add this to satisfy the linter.
decreasing_by
· simp_wf; have := Finset.antidiagonal.fst_le ijh.2; omega
· simp_wf; have := Finset.antidiagonal.snd_le ijh.2; omega
-- Compare to `Tree.treesOfNumNodesEq_zero`
@[simp]
theorem elementsOfNumNodesEq_zero : elementsOfNumNodesEq X 0 =
Finset.univ.map ⟨Lf, fun a b h ↦ by simpa using h⟩ := by rw [elementsOfNumNodesEq]
-- Compare to `Tree.treesOfNumNodesEq_succ`
theorem elementsOfNumNodesEq_succ {n : ℕ} : elementsOfNumNodesEq X (n + 1) =
(Finset.antidiagonal n).biUnion fun ijh => pairwiseFork (elementsOfNumNodesEq X ijh.1)
(elementsOfNumNodesEq X ijh.2) := by
rw [elementsOfNumNodesEq]
ext
simp
-- Compare to `Tree.mem_treesOfNumNodesEq`
@[simp]
theorem mem_elementsOfNumNodesEq {x : FreeMagma X} {n : ℕ} :
x ∈ elementsOfNumNodesEq X n ↔ order x = n := by
induction x generalizing n <;> cases n
· simp
· simp [elementsOfNumNodesEq_succ]
· simp
· simp [elementsOfNumNodesEq_succ, *]
-- Compare to `Tree.treesOfNumNodesEq_card_eq_catalan`
theorem elementsOfNumNodesEq_card_eq_catalan_mul_pow (n : ℕ) :
(elementsOfNumNodesEq X n).card = catalan n * (Fintype.card X) ^ (n + 1) := by
induction' n using Nat.case_strong_induction_on with n ih
· simp
rw [elementsOfNumNodesEq_succ, Finset.card_biUnion, catalan_succ', Finset.sum_mul]
· apply Finset.sum_congr rfl
rintro ⟨i, j⟩ h
rw [Finset.card_map, Finset.card_product, ih _ (Finset.antidiagonal.fst_le h),
ih _ (Finset.antidiagonal.snd_le h)]
rw [← Finset.mem_antidiagonal.1 h]
ring
· simp_rw [Finset.disjoint_left]
rintro ⟨i, j⟩ _ ⟨i', j'⟩ _
intro h a
cases' a with a l r
· intro h; simp at h
· refine fun h1 h2 ↦ h ?_
trans (order l, order r)
· simp at h1; simp [h1]
· simp at h2; simp [h2]
end FreeMagma