-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathtests.py
123 lines (103 loc) · 4.92 KB
/
tests.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import config
import torch
import unittest
import utils
from models import YOLOv1, YOLOv1ResNet
from loss import SumSquaredErrorLoss
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
class TestScratchModel(unittest.TestCase):
def test_shape(self):
batch_size = 64
test_model = YOLOv1().to(device)
test_tensor = torch.rand((batch_size, 3, config.IMAGE_SIZE[0], config.IMAGE_SIZE[1])).to(device)
result = test_model.forward(test_tensor)
self.assertEqual(tuple(result.size()), (128, config.S, config.S, test_model.depth))
class TestTransferModels(unittest.TestCase):
def test_shape(self):
batch_size = 64
test_model = YOLOv1ResNet().to(device)
test_tensor = torch.rand((batch_size, 3, config.IMAGE_SIZE[0], config.IMAGE_SIZE[1])).to(device)
result = test_model.forward(test_tensor)
self.assertEqual(tuple(result.size()), (batch_size, config.S, config.S, test_model.depth))
class TestLossFunction(unittest.TestCase):
SHAPE = (config.BATCH_SIZE, config.S, config.S, 5 * config.B + config.C)
def test_small_positive_iou(self):
a = torch.zeros((1, 1, 1, TestLossFunction.SHAPE[-1]))
a[0, 0, 0, config.C:config.C+5] = torch.tensor([1, 1, 1, 1, 1])
a[0, 0, 0, config.C+5:config.C+10] = torch.tensor([0.5, 0.5, 1, 1, 1])
b = torch.zeros((1, 1, 1, TestLossFunction.SHAPE[-1]))
b[0, 0, 0, config.C:config.C+5] = torch.tensor([0.5, 0.5, 1, 1, 1])
print(utils.get_iou(a, b))
def test_small_negative_iou(self):
test = torch.zeros((1, 1, 1, TestLossFunction.SHAPE[-1]))
test[0, 0, 0, 0:5] = torch.tensor([0, 0, 1, 1, 1])
print(utils.get_iou(test, test))
def test_bbox_to_coords_size(self):
test = torch.rand(TestLossFunction.SHAPE)
result = utils.bbox_to_coords(test)
self.assertEqual(result[0].size(), (config.BATCH_SIZE, config.S, config.S, config.B, 2))
self.assertEqual(result[1].size(), (config.BATCH_SIZE, config.S, config.S, config.B, 2))
def test_get_iou_size(self):
test = torch.rand(TestLossFunction.SHAPE)
result = utils.get_iou(test, test)
self.assertEqual(result.size(), (config.BATCH_SIZE, config.S, config.S, config.B, config.B))
def test_torch_max(self):
test = torch.rand((4, 2, 2))
print(test)
# print(torch.max(test, dim=0)[0])
# print(torch.max(test, dim=1))
# print(torch.argmax(test, dim=-2).size())
print(torch.max(test, dim=-2)[0].size())
print(torch.argmax(torch.max(test, dim=-2)[0], dim=-1, keepdim=True).size())
print(torch.zeros((4, 2)).scatter_(-1, torch.argmax(torch.max(test, dim=-2)[0], dim=-1, keepdim=True), value=1))
def test_zeros(self):
test = torch.zeros(TestLossFunction.SHAPE)
loss_func = SumSquaredErrorLoss()
result = loss_func(test, test)
self.assertEqual(tuple(result.size()), ())
self.assertEqual(0, result.item())
def test_positives(self):
test = torch.rand(TestLossFunction.SHAPE)
loss_func = SumSquaredErrorLoss()
result = loss_func(test + 1.0, test + 1.0)
self.assertEqual(tuple(result.size()), ())
self.assertFalse(torch.isnan(result).item())
self.assertTrue(result.item() >= 0)
def test_negatives(self):
test = torch.rand(TestLossFunction.SHAPE) - 1.0
loss_func = SumSquaredErrorLoss()
result = loss_func(test - 1.0, test + 1.0)
self.assertEqual(tuple(result.size()), ())
self.assertFalse(torch.isnan(result).item())
self.assertTrue(result.item() >= 0)
def test_single_bbox(self):
truth = torch.zeros(TestLossFunction.SHAPE)
truth[0, 0, 0, 4] = 1.0 # Bbox confidence
truth[0, 0, 0, -1] = 1.0 # Class
pred = torch.zeros(TestLossFunction.SHAPE)
pred[0, 0, 0, 0:5] = torch.ones(5)
loss_func = SumSquaredErrorLoss()
result = loss_func(pred, truth)
self.assertEqual(tuple(result.size()), ())
self.assertEqual(21.0, result.item())
def test_double_bbox(self):
truth = torch.zeros(TestLossFunction.SHAPE)
truth[0, 0, 0, 4] = 1.0 # Bbox confidences
truth[0, 0, 0, 9] = 1.0
truth[0, 0, 0, -1] = 1.0 # Class
pred = torch.zeros(TestLossFunction.SHAPE)
pred[0, 0, 0, 0:10] = torch.ones(10)
loss_func = SumSquaredErrorLoss()
result = loss_func(pred, truth)
self.assertEqual(tuple(result.size()), ())
self.assertEqual(41.0, result.item())
def test_noobj(self):
truth = torch.zeros(TestLossFunction.SHAPE)
pred = torch.zeros(TestLossFunction.SHAPE)
pred[0, 0, 0:10] = torch.ones(10)
loss_func = SumSquaredErrorLoss()
result = loss_func(pred, truth)
self.assertEqual(tuple(result.size()), ())
self.assertEqual(1.0, result.item())
if __name__ == '__main__':
unittest.main()