forked from Venkat-2341/ML-assignment-3-Final
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
270 lines (192 loc) · 8.56 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import os
import time
import streamlit as st
cont_size = st.radio(
'Context Size',
("5", "10"))
emb_dim = st.radio(
'Embedding Dim',
("64", "128"))
activation = st.radio(
'Activation Function',
("sine", "relu"))
start_text = st.text_input("Enter Seed text")
start = st.button("Start")
if start and start_text:
print("started execution")
st.write(f"You are in {cont_size} {emb_dim} {activation}")
name = fr'next_word_model_emb{emb_dim}_cont{cont_size}_{activation}'
model_path = weights_path = None
for i in os.listdir(r'D:\Coding\ES-335_ML_Assignment_3\Models'):
if i.startswith(name):
weights_path = i
print(weights_path)
from datasets import load_dataset
import torch
from torch.utils.data import Dataset, DataLoader
import re
st.write("Downloading Dataset")
ds = load_dataset("microsoft/orca-math-word-problems-200k")
def tokenizer(text):
tokens = [i for i in re.split(r'(\s|[^a-zA-Z])', text) if i and not i.isspace()]
return tokens
st.write("Building Vocab")
def build_vocab(dataset):
vocab = {'EOQ'}
count = 0
for string in dataset['train']['question']:
if not string:
continue
tokens = tokenizer(string.lower())
vocab.update(tokens)
vocab = sorted(vocab)
token_to_idx = {token: idx for idx, token in enumerate(vocab)}
idx_to_token = {idx: token for token, idx in token_to_idx.items()}
return token_to_idx, idx_to_token
token_to_idx, idx_to_token = build_vocab(ds)
vocab_size = len(token_to_idx)
print("Vocabulary size:", vocab_size)
class TokenizedDataset(Dataset):
def __init__(self, text_data, token_to_idx, context_size=5):
self.samples = []
self.context_size = context_size
self.token_to_idx = token_to_idx
counter = 0
for text in text_data:
if not text:
continue
counter += 1
if counter % 10000 == 0:
print(f'{counter*100/len(text_data)}% processed')
tokens = tokenizer(text.strip().lower())
indexed_tokens = [self.token_to_idx.get(token, self.token_to_idx['EOQ']) for token in tokens]
indexed_tokens = [self.token_to_idx['EOQ']] * self.context_size + indexed_tokens + [self.token_to_idx['EOQ']]
for i in range(context_size - 1, len(indexed_tokens) - 1):
context = indexed_tokens[i - context_size + 1: i + 1]
target = indexed_tokens[i + 1]
self.samples.append((context, target))
def __len__(self):
return len(self.samples)
def __getitem__(self, idx):
context, target = self.samples[idx]
return torch.tensor(context), torch.tensor(target)
context_size = int(cont_size)
emb_dim = int(emb_dim)
activation = activation
st.write("Making Dataloader")
train_texts = ds['train']['question']
tokenized_dataset = TokenizedDataset(train_texts, token_to_idx, context_size=context_size)
train_loader = DataLoader(tokenized_dataset, batch_size=4096, shuffle=True)
for context, target in train_loader:
print("Context:", context)
print("Target:", target)
break
def get_default_device():
"""Pick GPU if available, else CPU"""
if torch.cuda.is_available():
return torch.device('cuda')
else:
return torch.device('cpu')
device = get_default_device()
print("Device: ",device)
def to_device(data, device):
"""Move tensor(s) to chosen device"""
if isinstance(data, (list,tuple)):
return [to_device(x, device) for x in data]
return data.to(device, non_blocking=True)
class DeviceDataLoader():
"""Wrap a dataloader to move data to a device"""
def __init__(self, dl, device):
self.dl = dl
self.device = device
def __iter__(self):
"""Yield a batch of data after moving it to device"""
for b in self.dl:
yield to_device(b, self.device)
def __len__(self):
"""Number of batches"""
return len(self.dl)
import torch
import torch.nn as nn
vocab_size = len(token_to_idx)
num_epochs = 15
learning_rate = 0.001
class NextWord(nn.Module):
def __init__(self, context_size, vocab_size=len(token_to_idx), emb_dim=64, hidden_size=256, activation='sine'):
super().__init__()
self.emb = nn.Embedding(vocab_size, emb_dim)
self.lin1 = nn.Linear(context_size * emb_dim, hidden_size)
self.lin2 = nn.Linear(hidden_size, hidden_size)
self.lin3 = nn.Linear(hidden_size, hidden_size)
self.lin4 = nn.Linear(hidden_size, vocab_size)
self.dropout = nn.Dropout(0.3)
self.activation = activation
def forward(self, x):
x = self.emb(x)
x = x.view(x.shape[0], -1)
if self.activation == 'sine':
x = torch.sin(self.lin1(x))
x = torch.sin(self.lin2(x))
x = torch.sin(self.lin3(x))
elif self.activation == 'relu':
x = nn.functional.relu(self.lin1(x))
x = nn.functional.relu(self.lin2(x))
x = nn.functional.relu(self.lin3(x))
x = self.lin4(x)
return x
model = NextWord(context_size, vocab_size, emb_dim, hidden_size=512, activation=activation)
to_device(model, device)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)
for param_name, param in model.named_parameters():
print(param_name, param.shape)
def reconstruct_text(tokens):
result = []
print(tokens)
for i, token in enumerate(tokens):
result.append(token)
if i < len(tokens) - 1:
if token.isalpha() and tokens[i + 1].isalpha():
result.append(" ")
elif token.isalpha() and tokens[i + 1].isdigit():
result.append(" ")
elif token.isdigit() and tokens[i + 1].isalpha():
result.append(" ")
elif token in [',','.','!','?',':','%','&'] and tokens[i + 1].isalnum():
result.append(" ")
return ''.join(result)
checkpoint = torch.load('./Models/'+weights_path, weights_only=True)
model.load_state_dict(checkpoint['model_state_dict'], strict=False)
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
epoch = checkpoint['epoch']
loss = checkpoint['loss']
import torch
def stream_data(str):
for word in str.split(" "):
yield word + " "
time.sleep(0.09)
def generate_text(model, start_text, token_to_idx, idx_to_token, context_size=5, max_length=50):
model.eval()
tokens = tokenizer(start_text.lower())
input_indices = [token_to_idx.get(token, token_to_idx['EOQ']) for token in tokens]
if len(input_indices) < context_size:
input_indices = [token_to_idx['EOQ']] * (context_size - len(input_indices)) + input_indices
context = input_indices[-context_size:]
generated_tokens = tokens
with torch.no_grad():
for _ in range(max_length):
context_tensor = torch.tensor(context, device=device).unsqueeze(0)
output_logits = model(context_tensor)
predicted_token_idx = torch.distributions.categorical.Categorical(logits=output_logits).sample().item()
predicted_token = idx_to_token.get(predicted_token_idx, '<unk>')
generated_tokens.append(predicted_token)
context = context[1:] + [predicted_token_idx]
if predicted_token == 'EOQ':
generated_tokens.pop()
break
return reconstruct_text(generated_tokens)
# start_text = "Ramesh has 5 pencils"
generated_text = generate_text(model, start_text, token_to_idx, idx_to_token, context_size=int(cont_size), max_length=50)
print(generated_text)
st.write(generated_text)
st.sidebar.write_stream(stream_data(generated_text))