-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtune.sh
executable file
·41 lines (37 loc) · 1.46 KB
/
tune.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
#!/bin/bash
echo "log file path?(default:tune.log): "
DEFAULT_LOG_FILE="tune.log"
TENSORBOARD_LOG_FILE="./tensorboard"
read LOG_FILE
if [[ $LOG_FILE == "" ]]
then
LOG_FILE=$DEFAULT_LOG_FILE
fi
# array=(sth0 sth1 sth2) <-- bashにおける配列の定義方法
batch_size_list=(1 5 10 50)
embeddings_size_list=(50 100 200 400)
learning_rate_list=(0.0001 0.001 0.01)
# exp( -4 * log(10)) == 10^(-4)
# これをbc -l にパイプで渡して計算させる
l2_coef_list=($(echo "e(-4 * l(10))" | bc -l) $(echo "e(-5 * l(10))" | bc -l) $(echo "e(-6 * l(10))" | bc -l))
dropout_rate_list=(0.0 0.25 0.5)
# ${array[@]} --> (sth0 sth1 sth2)
# $array --> sth0
for batch_size in ${batch_size_list[@]}; do
for embeddings_size in ${embeddings_size_list[@]}; do
for learning_rate in ${learning_rate_list[@]}; do
for l2_coef in ${l2_coef_list[@]}; do
for dropout_rate in ${dropout_rate_list[@]}; do
echo "----------TRAINING----------"
echo "batch_size:$batch_size"
echo "embeddings_size:$embeddings_size"
echo "learning_rate:$learning_rate"
echo "l2_coef:$l2_coef"
echo "dropout_rate:$dropout_rate"
echo ""
python3 logreg_minibatch.py train.txt devel.txt --batch-size $batch_size --dim $embeddings_size --learning-rate $learning_rate --l2-coef $l2_coef --dropout-rate $dropout_rate --logdir $TENSORBOARD_LOG_FILE --eval-logfile $LOG_FILE --eval-log
done
done
done
done
done