-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
386 lines (338 loc) · 17 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
import os
import gc
import math
import time
import argparse
from collections import OrderedDict
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import AdamW as HFAdamW, get_linear_schedule_with_warmup
import db2 as data
import model_utils as mutils
def do_batch(model, db, masks, dummy, device, args, val=False):
try:
min_nes = args.min_valnes if val else args.min_nes
#tic = time.perf_counter()
srcs, ufeats, neighbs, cnvi, tgts1, tgts2, extra = db.do_roll_in(
min_nes, max_canvlen=args.max_canvlen, val=val, leftright=args.leftright)
#print("roll in took {:3.4f}".format(time.perf_counter()-tic))
_, bsz = srcs.size()
srcs, ufeats, neighbs = srcs.to(device), ufeats.to(device), neighbs.to(device)
canvases, relidxs = cnvi[0].to(device), cnvi[1].to(device)
starttgts = tgts1.t().to(device) # max_startlen x bsz -> bsz x max_startlen
netgts, fin_idx = tgts2, extra
emask = masks[0]
# get srclen x bsz x dim and canvlen x bsz x dim encodings
encsrc, enccanv, _ = model.src_encode(
srcs, ufeats, None, canvases, relidxs, db.pad_idx)
encne = model.ne_encode(neighbs, db.pad_idx) # nelen x nne x dim
if args.norm and 'C' not in args.Topts:
enccanv = F.normalize(enccanv, p=2, dim=2)
canvmask = canvases == db.pad_idx # canvlen x bsz
nemask = (neighbs.view(-1) == db.pad_idx).unsqueeze(0) # 1 x nelen*nne
if args.leftright:
# get the embeddings of canvas positions 1 to the left of the next insertion pos
# (which we know); these are the tj (really tj+1-1 b/c of <tgt> and fenceposting)
leftidxs = torch.LongTensor([tup[4] for tup in netgts]).to(device)
lenccanv = enccanv.gather( # bsz x dim
0, leftidxs.view(1, bsz, 1).expand(1, bsz, enccanv.size(2))).squeeze(0)
senccanv = lenccanv
else:
senccanv = enccanv
startlps = model.actmodel.get_start_lps( # bsz x C*(nelen*nne+V+S); C = 1 if lr else canvlen
senccanv, canvmask, encne, nemask, encsrc, srcs, model.lut, pad_idx=db.pad_idx,
norm=args.norm)
startloss = mutils.neg_log_marg(startlps, starttgts+1, dummy.expand(bsz, 1)).sum()
lps1, loss1 = startlps, startloss
if val: # get acc
_, preds1 = lps1.max(1)
ncrct1 = (preds1.view(bsz, -1) == starttgts.view(bsz, -1)).sum().item()
npreds1 = bsz
else:
ncrct1, npreds1 = None, None
remembs = model.actmodel.get_end_embs(encne, encsrc, model.lut, netgts)
if args.leftright:
endmask = emask[:bsz, 0, :remembs.size(0)] # bsz x maxremlen
endmask.fill_(True)
endtgts = mutils.get_leftright_endstuff(netgts, endmask).to(device) # bsz
else:
endmask = emask[:bsz, :canvases.size(0), :remembs.size(0)]
endmask.fill_(True)
endtgts = mutils.get_endstuff(netgts, endmask).to(device) # bsz
endlps = model.actmodel.get_end_lps1(senccanv, remembs, endmask, norm=args.norm)
endloss = F.nll_loss(endlps, endtgts, reduction='none')
startedmask = starttgts[:, 0] != fin_idx
lps2, loss2 = endlps, endloss[startedmask].sum()
if val:
_, preds2 = lps2.max(1)
ncrct2 = (preds2.view(bsz, -1) == endtgts.view(bsz, -1))[startedmask].sum().item()
npreds2 = startedmask.sum().item()
else:
ncrct2, npreds2 = None, None
if not val: # backprop but don't divide here..
loss3 = 0
if args.recloss is not None:
if args.recloss == 'disc':
loss3 = mutils.discrec_loss(
model.bwdmodel, srcs, canvases, enccanv, startedmask, db.pad_idx)
else:
loss3 = mutils.rec_loss(
srcs, canvases, encsrc, enccanv, startedmask, db.pad_idx,
cosine=(args.recloss == 'cosine'))
wts = args.losswts
(wts[0]*loss1 + wts[1]*loss2 + wts[2]*loss3).backward()
except RuntimeError as ex:
raise ex
#print("assuming OOM")
#gc.collect()
#torch.cuda.empty_cache()
#loss1, loss2 = None, None
#ncrct1, npreds1, ncrct2, npreds2 = None, None, None, None
return loss1, loss2, bsz, ncrct1, npreds1, ncrct2, npreds2
# this does gold roll-in training
def train(db, model, optim, scheduler, masks, device, args):
model.train()
total_loss1, total_loss2 = 0, 0
nex = 0
dummy = torch.Tensor([[-float("inf")]]).to(device)
optim.zero_grad()
accum_size = 0
for i in range(args.mbs_per_epoch):
loss1, loss2, bsz, _, _, _, _ = do_batch(model, db, masks, dummy, device, args)
if loss1 is None or loss2 is None: # memory issue
continue
if torch.isnan(loss1):
print("got loss1 nan on", i, "...bailing")
break
if torch.isnan(loss2):
print("got loss2 nan on", i, "...bailing")
break
total_loss1 += loss1.item()
total_loss2 += loss2.item()
accum_size += bsz
if accum_size >= args.min_seq_accum or i == args.mbs_per_epoch-1:
for p in model.parameters(): # avg grads
if p.grad is not None:
p.grad.data.div_(accum_size)
accum_size = 0
nn.utils.clip_grad_norm_(model.parameters(), args.clip)
optim.step()
optim.zero_grad()
scheduler.step()
nex += bsz
if (i+1) % args.log_interval == 0:
print("{:5d}/{:5d} | lr {:02.4f} | loss1 {:7.2f} | loss2 {:7.2f}".format(
i+1, args.mbs_per_epoch, scheduler.get_last_lr()[0], total_loss1/nex,
total_loss2/nex))
return (total_loss1 + total_loss2)/nex
def validate(db, model, masks, device, args):
model.eval()
total_loss1, total_loss2 = 0, 0
nex, npreds1, ncrct1, npreds2, ncrct2 = 0, 0, 0, 0, 0
dummy = torch.Tensor([[-float("inf")]]).to(device)
db.val_bidx = 0
for i in range(args.val_mbs_per_epoch):
loss1, loss2, bsz, ncrct1i, npreds1i, ncrct2i, npreds2i = do_batch(
model, db, masks, dummy, device, args, val=True)
if loss1 is None or loss2 is None: # memory issue
continue
total_loss1 += loss1.item()
ncrct1 += ncrct1i
npreds1 += npreds1i
total_loss2 += loss2.item()
ncrct2 += ncrct2i
npreds2 += npreds2i
nex += bsz
print("acc1:", ncrct1/npreds1, "acc2:", ncrct2/npreds2)
avg_acc = 0.5*(ncrct1/npreds1 + ncrct2/npreds2)
return total_loss1, total_loss2, nex, avg_acc
parser = argparse.ArgumentParser(description='')
parser.add_argument('-data', type=str, default="data/wb", help='datadir')
parser.add_argument('-vocopts', nargs='+', type=int, default=[20, 20, None, None],
help='missing_thresh,reg_thresh,max_gen_voc_size,max_voc_size')
parser.add_argument('-flat_moves', action='store_true', help='')
parser.add_argument('-enclose', action='store_true', help='')
parser.add_argument('-sel_firstlast_idxing', action='store_true', help='')
parser.add_argument('-leftright', action='store_true', help='')
parser.add_argument('-nne', type=int, default=100,
help='neighbors per example')
parser.add_argument("-prote_fi", default="", type=str, help="")
parser.add_argument("-tokfi",
default=None, type=str, help="")
parser.add_argument("-split_dashes", action='store_true', help="")
parser.add_argument('-min_nes', type=int, default=20, help='per example')
parser.add_argument('-min_valnes', type=int, default=20, help='per example')
parser.add_argument('-prenorm', action='store_true', help='')
parser.add_argument('-embdim', type=int, default=512, help='')
parser.add_argument('-ffdim', type=int, default=1024, help='tranformer internal dim')
parser.add_argument('-nheads', type=int, default=8, help='')
parser.add_argument('-senc_layers', type=int, default=4, help='')
parser.add_argument('-enc_layers', type=int, default=6, help='')
parser.add_argument('-norm', action='store_true', help='normalize embeddings')
parser.add_argument('-fixed_pos_embs', action='store_true', help='')
parser.add_argument('-max_moves', type=int, default=100, help='')
parser.add_argument('-max_canvlen', type=int, default=200, help='helps w/ mem...')
parser.add_argument('-use_lengths', action='store_true', help='')
parser.add_argument('-share_encs', action='store_true', help='')
parser.add_argument('-activ', type=str, default='gelu', choices=['gelu', 'relu'], help='')
parser.add_argument('-src_mode', type=str, default='mask', choices=['mask', 'feat', None], help='')
parser.add_argument('-Topts', type=str, default='NSW',
choices=['NSW', 'NSWx2', 'CNSW', 'CNSWx2'], help='')
parser.add_argument('-optalg', type=str, default='adamw', choices=['hf_adamw', 'adamw'], help='')
parser.add_argument('-init', type=float, default=0.1, help='param init')
parser.add_argument('-adamhyps', type=str, default='0.9,0.999,1e-8,0.001', help='')
parser.add_argument('-lr', type=float, default=0.0005, help='initial learning rate')
parser.add_argument('-no_isr_schedule', action='store_true', help='')
parser.add_argument('-no_decay', action='store_true', help='')
parser.add_argument('-warmup_init_lr', type=float, default=1e-7, help='initial learning rate')
parser.add_argument('-warmup_steps', type=int, default=4000, help='')
parser.add_argument('-clip', type=float, default=1, help='gradient clipping')
parser.add_argument('-epochs', type=int, default=100, help='upper epoch limit')
parser.add_argument('-bsz', type=int, default=32, help='batch size')
parser.add_argument('-val_bsz', type=int, default=32, help='batch size')
parser.add_argument('-min_seq_accum', type=int, default=200, help='')
parser.add_argument('-drop', type=float, default=0.1, help='dropout')
parser.add_argument('-mbs_per_epoch', type=int, default=500000000, help='')
parser.add_argument('-val_mbs_per_epoch', type=int, default=500000000, help='')
parser.add_argument('-losswts', nargs='+', type=float, default=[0.5, 0.5, 0.0], help='')
parser.add_argument('-recloss', type=str, default=None, choices=['cosine', 'l2', 'disc'], help='')
parser.add_argument('-seed', type=int, default=3636, help='random seed')
parser.add_argument('-wait', type=int, default=3, help='')
parser.add_argument('-cuda', action='store_true', help='use CUDA')
parser.add_argument('-log_interval', type=int, default=200, help='report interval')
parser.add_argument('-save', type=str, default='', help='path to save the final model')
parser.add_argument('-train_from', type=str, default='', help='')
parser.add_argument('-just_eval', action='store_true', help='')
# adapted from huggingface transformers examples/lightning_base.py
def prep_optim(model, args):
no_decay = ["bias", "LayerNorm.weight"]
grouped_parameters = [
{"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": args.awd,},
{"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
"weight_decay": 0.0,},]
if args.optalg == "hf_adamw":
optim = HFAdamW(grouped_parameters, lr=args.lr, betas=(args.beta1, args.beta2),
eps=args.aeps)
else:
optim = torch.optim.AdamW(grouped_parameters, lr=args.lr, betas=(args.beta1, args.beta2),
eps=args.aeps)
if args.no_isr_schedule:
lr_lambda = lambda current_step: 1
else:
def lr_lambda(current_step):
if current_step < args.warmup_steps:
lr_step = (args.lr - args.warmup_init_lr)/args.warmup_steps
return (args.warmup_init_lr + current_step*lr_step)/args.lr
return args.warmup_steps**0.5 * current_step**-0.5
scheduler = torch.optim.lr_scheduler.LambdaLR(optim, lr_lambda)
return optim, scheduler
def main(db, args):
print("main args", args)
torch.manual_seed(args.seed)
if torch.cuda.is_available():
if not args.cuda:
print("WARNING: You have a CUDA device, so you should probably run with -cuda")
device = torch.device("cuda" if args.cuda else "cpu")
print("total train batches", db.nbatches)
print("total val batches", db.nval_batches)
args.padidx = db.d.w2i["<pad>"]
args.bosidx = db.d.w2i["<bos>"]
args.eosidx = db.d.w2i["<eos>"]
mod_ctor = mutils.BartThing
if args.train_from:
saved_stuff = torch.load(args.train_from)
saved_args = saved_stuff["opt"]
model = mod_ctor(len(db.d), db.d.gen_voc_size, saved_args)
bestmodel = mod_ctor(len(db.d), db.d.gen_voc_size, saved_args)
model.load_state_dict(saved_stuff["sd"])
model = model.to(device)
optim, scheduler = prep_optim(model, saved_args)
optim.load_state_dict(saved_stuff["osd"])
scheduler.load_state_dict(saved_stuff["ssd"])
best_loss, best_acc = saved_stuff["bestloss"], saved_stuff["bestacc"]
# update things that could reasonably change when restarting...
saved_args.epochs, saved_args.mbs_per_epoch = args.epochs, args.mbs_per_epoch
saved_args.val_mbs_per_epoch, saved_args.save = args.val_mbs_per_epoch, args.save
saved_args.bsz, saved_args.wait = args.bsz, args.wait
saved_args.just_eval = args.just_eval
args = saved_args
print("starting with:", scheduler._step_count, saved_args.lr, scheduler.get_last_lr(),
best_loss, best_acc)
#assert False
else:
model = mod_ctor(len(db.d), db.d.gen_voc_size, args).to(device)
bestmodel = mod_ctor(len(db.d), db.d.gen_voc_size, args)
optim, scheduler = prep_optim(model, args)
best_loss, best_acc = float("inf"), 0
max_ncanvs, max_seqlen = 500, max(db.max_srclen, db.max_tgtlen)
maskcanvlen = 1 if args.leftright else args.max_canvlen
emask = torch.ones(max_ncanvs, maskcanvlen, max_seqlen, dtype=torch.bool).to(device)
masks = [emask]
if args.just_eval:
db.curr_batch = None
with torch.no_grad():
vloss1, vloss2, vnex, avg_acc = validate(db, model, masks, device, args)
voloss = (vloss1 + vloss2)/vnex
print("Epoch {:3d} | val loss1 {:6.3f} | val loss2 {:6.3f} | "
"val loss {:6.3f} | avg acc {:6.3f}".format(
0, vloss1/vnex, vloss2/vnex, voloss, avg_acc))
return None, 0, None, None
assert args.losswts[2] > 0 or args.recloss is None
bad_epochs = -1
for ep in range(args.epochs):
trloss = train(db, model, optim, scheduler, masks, device, args)
if trloss is None:
print("we're done here")
break
print("Epoch {:3d} | train loss {:6.3f}".format(ep, trloss))
with torch.no_grad():
vloss1, vloss2, vnex, avg_acc = validate(db, model, masks, device, args)
voloss = (vloss1 + vloss2)/vnex
print("Epoch {:3d} | val loss1 {:6.3f} | val loss2 {:6.3f} | "
"val loss {:6.3f} | avg acc {:6.3f}".format(
ep, vloss1/vnex, vloss2/vnex, voloss, avg_acc))
if voloss < best_loss:
best_loss = voloss
if avg_acc > best_acc:
best_acc = avg_acc
if os.path.exists(args.save+"-a"): # we should delete it since we've surpassed it
os.remove(args.save+"-a")
bad_epochs = -1
print("updating best model")
bestmodel.load_state_dict(model.state_dict())
if len(args.save) > 0:
savepath = args.save+"-l"
print("saving model to", savepath)
torch.save(
{"opt": args, "sd": bestmodel.state_dict(), "osd": optim.state_dict(),
"ssd": scheduler.state_dict(), "bestloss": best_loss, "bestacc": best_acc},
savepath)
elif avg_acc > best_acc:
best_acc = avg_acc
bad_epochs = -1
print("updating best model")
bestmodel.load_state_dict(model.state_dict())
if len(args.save) > 0:
savepath = args.save+"-a"
print("saving model to", savepath)
torch.save(
{"opt": args, "sd": bestmodel.state_dict(), "osd": optim.state_dict(),
"ssd": scheduler.state_dict(), "bestloss": best_loss, "bestacc": best_acc},
savepath)
bad_epochs += 1
if bad_epochs >= args.wait:
break
print("")
return bestmodel, best_loss, optim, scheduler
if __name__ == "__main__":
args = parser.parse_args()
args.sel_firstlast_idxing = True
args.arbl = False
print(args)
db = data.TrainDB(args)
beta1, beta2, aeps, awd = [float(thing) for thing in args.adamhyps.split(',')]
args.beta1, args.beta2, args.aeps, args.awd = beta1, beta2, aeps, awd
torch.manual_seed(args.seed)
bestmodel, runloss, optim, scheduler = main(db, args)