forked from FederatedAI/FATE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpipeline-mini-demo.py
131 lines (108 loc) · 5.19 KB
/
pipeline-mini-demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
#
# Copyright 2019 The FATE Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from pipeline.backend.config import Backend, WorkMode
from pipeline.backend.pipeline import PipeLine
from pipeline.component import DataIO
from pipeline.component import Evaluation
from pipeline.component import HeteroLR
from pipeline.component import Intersection
from pipeline.component import Reader
from pipeline.interface import Data
from pipeline.runtime.entity import JobParameters
def main():
# parties config
guest = 9999
host = 10000
arbiter = 10000
# 0 for eggroll, 1 for spark
backend = Backend.EGGROLL
# 0 for standalone, 1 for cluster
work_mode = WorkMode.STANDALONE
# use the work mode below for cluster deployment
# work_mode = WorkMode.CLUSTER
# specify input data name & namespace in database
guest_train_data = {"name": "breast_hetero_guest", "namespace": "experiment"}
host_train_data = {"name": "breast_hetero_host", "namespace": "experiment"}
guest_eval_data = {"name": "breast_hetero_guest", "namespace": "experiment"}
host_eval_data = {"name": "breast_hetero_host", "namespace": "experiment"}
# initialize pipeline
pipeline = PipeLine()
# set job initiator
pipeline.set_initiator(role="guest", party_id=guest)
# set participants information
pipeline.set_roles(guest=guest, host=host, arbiter=arbiter)
# define Reader components to read in data
reader_0 = Reader(name="reader_0")
# configure Reader for guest
reader_0.get_party_instance(role="guest", party_id=guest).component_param(table=guest_train_data)
# configure Reader for host
reader_0.get_party_instance(role="host", party_id=host).component_param(table=host_train_data)
# define DataIO component
dataio_0 = DataIO(name="dataio_0")
# get DataIO party instance of guest
dataio_0_guest_party_instance = dataio_0.get_party_instance(role="guest", party_id=guest)
# configure DataIO for guest
dataio_0_guest_party_instance.component_param(with_label=True, output_format="dense")
# get and configure DataIO party instance of host
dataio_0.get_party_instance(role="host", party_id=host).component_param(with_label=False)
# define Intersection components
intersection_0 = Intersection(name="intersection_0")
# define HeteroLR component
hetero_lr_0 = HeteroLR(name="hetero_lr_0",
early_stop="diff",
learning_rate=0.15,
optimizer="rmsprop",
max_iter=10)
# add components to pipeline, in order of task execution
pipeline.add_component(reader_0)
pipeline.add_component(dataio_0, data=Data(data=reader_0.output.data))
# set data input sources of intersection components
pipeline.add_component(intersection_0, data=Data(data=dataio_0.output.data))
# set train data of hetero_lr_0 component
pipeline.add_component(hetero_lr_0, data=Data(train_data=intersection_0.output.data))
# compile pipeline once finished adding modules, this step will form conf and dsl files for running job
pipeline.compile()
# fit model
job_parameters = JobParameters(backend=backend, work_mode=work_mode)
pipeline.fit(job_parameters)
# query component summary
import json
print (json.dumps(pipeline.get_component("hetero_lr_0").get_summary(), indent=4))
# predict
# deploy required components
pipeline.deploy_component([dataio_0, intersection_0, hetero_lr_0])
# initiate predict pipeline
predict_pipeline = PipeLine()
# define new data reader
reader_1 = Reader(name="reader_1")
reader_1.get_party_instance(role="guest", party_id=guest).component_param(table=guest_eval_data)
reader_1.get_party_instance(role="host", party_id=host).component_param(table=host_eval_data)
# define evaluation component
evaluation_0 = Evaluation(name="evaluation_0")
evaluation_0.get_party_instance(role="guest", party_id=guest).component_param(need_run=True, eval_type="binary")
evaluation_0.get_party_instance(role="host", party_id=host).component_param(need_run=False)
# add data reader onto predict pipeline
predict_pipeline.add_component(reader_1)
# add selected components from train pipeline onto predict pipeline
# specify data source
predict_pipeline.add_component(pipeline,
data=Data(predict_input={pipeline.dataio_0.input.data: reader_1.output.data}))
# add evaluation component to predict pipeline
predict_pipeline.add_component(evaluation_0, data=Data(data=pipeline.hetero_lr_0.output.data))
# run predict model
predict_pipeline.predict(job_parameters)
if __name__ == "__main__":
main()