-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy path20NewsBatchTest1.py
219 lines (158 loc) · 7.78 KB
/
20NewsBatchTest1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
from collections import Counter
import tensorflow as tf
from sklearn.datasets import fetch_20newsgroups
import matplotlib as mplt
mplt.use('agg') # Must be before importing matplotlib.pyplot or pylab!
import matplotlib.pyplot as plt
from string import punctuation
from sklearn.preprocessing import LabelBinarizer
import numpy as np
from nltk.corpus import stopwords
from sklearn.metrics import f1_score, recall_score, precision_score, accuracy_score
from sklearn.model_selection import train_test_split
import nltk
nltk.download('stopwords')
# without sequence length
def pre_process():
newsgroups_data = fetch_20newsgroups(subset='all', remove=('headers', 'footers', 'quotes'))
words = []
temp_post_text = []
print(len(newsgroups_data.data))
for post in newsgroups_data.data:
all_text = ''.join([text for text in post if text not in punctuation])
all_text = all_text.split('\n')
all_text = ''.join(all_text)
temp_text = all_text.split(" ")
for word in temp_text:
if word.isalpha():
temp_text[temp_text.index(word)] = word.lower()
temp_text = [word for word in temp_text if word not in stopwords.words('english')]
temp_text = list(filter(None, temp_text))
temp_text = ' '.join([i for i in temp_text if not i.isdigit()])
words += temp_text.split(" ")
temp_post_text.append(temp_text)
# temp_post_text = list(filter(None, temp_post_text))
dictionary = Counter(words)
# deleting spacesA
# del dictionary[""]
sorted_split_words = sorted(dictionary, key=dictionary.get, reverse=True)
vocab_to_int = {c: i for i, c in enumerate(sorted_split_words,1)}
message_ints = []
for message in temp_post_text:
temp_message = message.split(" ")
message_ints.append([vocab_to_int[i] for i in temp_message])
# maximum message length = 6577
# message_lens = Counter([len(x) for x in message_ints])
seq_length = 1000
num_messages = len(temp_post_text)
features = np.zeros([num_messages, seq_length], dtype=int)
for i, row in enumerate(message_ints):
features[i, -len(row):] = np.array(row)[:seq_length]
lb = LabelBinarizer()
lbl = newsgroups_data.target
labels = np.reshape(lbl, [-1])
labels = lb.fit_transform(labels)
# sequence_lengths = []
#
# for msg in message_ints:
# lentemp = len(msg)
# if lentemp > 1000:
# lentemp = 1000
# sequence_lengths.append(lentemp)
return features, labels, len(sorted_split_words)+1
def get_batches(x, y, batch_size=100):
n_batches = len(x) // batch_size
x, y = x[:n_batches * batch_size], y[:n_batches * batch_size]
for ii in range(0, len(x), batch_size):
yield x[ii:ii + batch_size], y[ii:ii + batch_size]
def train_test():
features, labels, n_words = pre_process()
train_x, test_x, train_y, test_y = train_test_split(features, labels, test_size=0.2, shuffle=False, random_state=42)
# sequence_length_train = sequence_length[:len(train_y)]
# sequence_length_test= sequence_length[len(train_y):]
# Defining Hyperparameters
lstm_layers = 1
batch_size = 179
lstm_size = 30
learning_rate = 0.003
epoch = 15
print("learning 32")
# --------------placeholders-------------------------------------
# Create the graph object
graph = tf.Graph()
# Add nodes to the graph
with graph.as_default():
tf.set_random_seed(1)
inputs_ = tf.placeholder(tf.int32, [None, None], name="inputs")
# labels_ = tf.placeholder(dtype= tf.int32)
labels_ = tf.placeholder(tf.float32, [None, None], name="labels")
# sql_in = tf.placeholder(tf.int32, [None], name='sql_in')
# Size of the embedding vectors (number of units in the embedding layer)
embed_size = 300
# generating random values from a uniform distribution (minval included and maxval excluded)
embedding = tf.Variable(tf.random_uniform((n_words, embed_size), -1, 1), trainable=True)
embed = tf.nn.embedding_lookup(embedding, inputs_)
# Your basic LSTM cell
lstm = tf.contrib.rnn.BasicLSTMCell(lstm_size)
# Getting an initial state of all zeros
initial_state = lstm.zero_state(batch_size, tf.float32)
outputs, final_state = tf.nn.dynamic_rnn(lstm, embed, initial_state=initial_state)
# out_batch_size = tf.shape(outputs)[0]
# out_max_length = tf.shape(outputs)[1]
# out_size = int(outputs.get_shape()[2])
# index = tf.range(0, out_batch_size) * out_max_length + (sql_in - 1)
# flat = tf.reshape(outputs, [-1, out_size])
# relevant = tf.gather(flat, index)
# hidden layer
hidden = tf.layers.dense(outputs[:,-1], units=25, activation=tf.nn.relu)
logit = tf.contrib.layers.fully_connected(hidden, num_outputs=20, activation_fn=None)
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logit, labels=labels_))
optimizer = tf.train.AdamOptimizer(learning_rate).minimize(cost)
saver = tf.train.Saver()
# ----------------------------batch training-----------------------------------------
with tf.Session(graph=graph) as sess:
tf.set_random_seed(1)
sess.run(tf.global_variables_initializer())
iteration = 1
for e in range (epoch):
state = sess.run(initial_state)
for ii, (x, y) in enumerate(get_batches(np.array(train_x), np.array(train_y), batch_size), 1):
feed = {inputs_: x,
labels_: y,
initial_state: state}
loss, states, _ = sess.run([cost, final_state, optimizer], feed_dict=feed)
if iteration % 5 == 0:
print("Epoch: {}/{}".format(e, epoch),
"Iteration: {}".format(iteration),
"Train loss: {:.3f}".format(loss))
iteration += 1
saver.save(sess, "checkpoints/sentiment.ckpt")
# -----------------testing test set-----------------------------------------
print("starting testing set")
argmax_pred_array = []
argmax_label_array = []
with tf.Session(graph=graph) as sess:
tf.set_random_seed(1)
saver.restore(sess, tf.train.latest_checkpoint('checkpoints'))
test_state = sess.run(lstm.zero_state(batch_size, tf.float32))
for ii, (x, y) in enumerate(get_batches(np.array(test_x), np.array(test_y), batch_size), 1):
feed = {inputs_: x,
labels_: y,
initial_state: test_state}
predictions = tf.nn.softmax(logit).eval(feed_dict=feed)
for i in range(len(predictions)):
argmax_pred_array.append(np.argmax(predictions[i], 0))
argmax_label_array.append(np.argmax(y[i], 0))
print(len(argmax_pred_array))
print(len(argmax_label_array))
accuracy = accuracy_score(argmax_label_array, argmax_pred_array)
batch_f1 = f1_score(argmax_label_array, argmax_pred_array, average="macro")
batch_recall = recall_score(y_true=argmax_label_array, y_pred=argmax_pred_array, average='macro')
batch_precision = precision_score(argmax_label_array, argmax_pred_array, average='macro')
print("-----------------testing test set-----------------------------------------")
print("Test accuracy: {:.3f}".format(accuracy))
print("F1 Score: {:.3f}".format(batch_f1))
print("Recall: {:.3f}".format(batch_recall))
print("Precision: {:.3f}".format(batch_precision))
if __name__ == '__main__':
train_test()