-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathartistic.py
48 lines (37 loc) · 1.19 KB
/
artistic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import cv2
import numpy as np
from scipy.interpolate import UnivariateSpline
def spreadLookupTable(x, y):
spline = UnivariateSpline(x, y)
return spline(range(256))
def make_warm(I):
increaseLookupTable = spreadLookupTable([0, 64, 128, 256], [0, 80, 160, 256])
decreaseLookupTable = spreadLookupTable([0, 64, 128, 256], [0, 50, 100, 256])
red, green, blue = cv2.split(I)
red = cv2.LUT(red, decreaseLookupTable).astype(np.uint8)
blue = cv2.LUT(blue, increaseLookupTable).astype(np.uint8)
return cv2.merge((red, green, blue))
I = cv2.imread("./image.jpg")
G = cv2.cvtColor(I, cv2.COLOR_BGR2GRAY)
G = cv2.GaussianBlur(G, (3,3), 3.14)
G = cv2.medianBlur(G, 11)
G = cv2.adaptiveThreshold(G, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 11, 11)
C = cv2.bilateralFilter(I, 7, 200, 200)
A = cv2.bitwise_and(C, C, mask=G)
E = cv2.Canny(C, 50, 200)
E[E==255] = 1
E[E==0] = 255
E[E==1] = 0
E = cv2.cvtColor(E, cv2.COLOR_GRAY2BGR)
alpha = 0.25
A = cv2.addWeighted(E, alpha, A, 1-alpha, 0)
alpha = 0.5
A = cv2.addWeighted(I, alpha, A, 1-alpha, 0)
A = make_warm(A)
cv2.imshow("I", I)
# cv2.imshow("", G)
# cv2.imshow("", C)
# cv2.imshow("", E)
cv2.imshow("A", A)
cv2.waitKey(0)
cv2.destroyAllWindows()