-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathtrain.py
252 lines (208 loc) · 10.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import argparse
import os
import copy
import pprint
from os import path
import torch
import numpy as np
from torch import nn
from gan_training import utils
from gan_training.train import Trainer, update_average
from gan_training.logger import Logger
from gan_training.checkpoints import CheckpointIO
from gan_training.inputs import get_dataset
from gan_training.distributions import get_ydist, get_zdist
from gan_training.eval import Evaluator
from gan_training.config import (load_config, get_clusterer, build_models, build_optimizers)
from seeing.pidfile import exit_if_job_done, mark_job_done
torch.backends.cudnn.benchmark = True
# Arguments
parser = argparse.ArgumentParser(
description='Train a GAN with different regularization strategies.')
parser.add_argument('config', type=str, help='Path to config file.')
parser.add_argument('--outdir', type=str, help='used to override outdir (useful for multiple runs)')
parser.add_argument('--nepochs', type=int, default=250, help='number of epochs to run before terminating')
parser.add_argument('--model_it', type=int, default=-1, help='which model iteration to load from, -1 loads the most recent model')
parser.add_argument('--devices', nargs='+', type=str, default=['0'], help='devices to use')
args = parser.parse_args()
config = load_config(args.config, 'configs/default.yaml')
out_dir = config['training']['out_dir'] if args.outdir is None else args.outdir
def main():
pp = pprint.PrettyPrinter(indent=1)
pp.pprint({
'data': config['data'],
'generator': config['generator'],
'discriminator': config['discriminator'],
'clusterer': config['clusterer'],
'training': config['training']
})
is_cuda = torch.cuda.is_available()
# Short hands
batch_size = config['training']['batch_size']
log_every = config['training']['log_every']
inception_every = config['training']['inception_every']
backup_every = config['training']['backup_every']
sample_nlabels = config['training']['sample_nlabels']
nlabels = config['data']['nlabels']
sample_nlabels = min(nlabels, sample_nlabels)
checkpoint_dir = path.join(out_dir, 'chkpts')
# Create missing directories
if not path.exists(out_dir):
os.makedirs(out_dir)
if not path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
# Logger
checkpoint_io = CheckpointIO(checkpoint_dir=checkpoint_dir)
device = torch.device("cuda:0" if is_cuda else "cpu")
train_dataset, _ = get_dataset(
name=config['data']['type'],
data_dir=config['data']['train_dir'],
size=config['data']['img_size'],
deterministic=config['data']['deterministic'])
train_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=batch_size,
num_workers=config['training']['nworkers'],
shuffle=True,
pin_memory=True,
sampler=None,
drop_last=True)
# Create models
generator, discriminator = build_models(config)
# Put models on gpu if needed
generator = generator.to(device)
discriminator = discriminator.to(device)
for name, module in discriminator.named_modules():
if isinstance(module, nn.Sigmoid):
print('Found sigmoid layer in discriminator; not compatible with BCE with logits')
exit()
g_optimizer, d_optimizer = build_optimizers(generator, discriminator, config)
devices = [int(x) for x in args.devices]
generator = nn.DataParallel(generator, device_ids=devices)
discriminator = nn.DataParallel(discriminator, device_ids=devices)
# Register modules to checkpoint
checkpoint_io.register_modules(generator=generator,
discriminator=discriminator,
g_optimizer=g_optimizer,
d_optimizer=d_optimizer)
# Logger
logger = Logger(log_dir=path.join(out_dir, 'logs'),
img_dir=path.join(out_dir, 'imgs'),
monitoring=config['training']['monitoring'],
monitoring_dir=path.join(out_dir, 'monitoring'))
# Distributions
ydist = get_ydist(nlabels, device=device)
zdist = get_zdist(config['z_dist']['type'], config['z_dist']['dim'], device=device)
ntest = config['training']['ntest']
x_test, y_test = utils.get_nsamples(train_loader, ntest)
x_cluster, y_cluster = utils.get_nsamples(train_loader, config['clusterer']['nimgs'])
x_test, y_test = x_test.to(device), y_test.to(device)
z_test = zdist.sample((ntest, ))
utils.save_images(x_test, path.join(out_dir, 'real.png'))
logger.add_imgs(x_test, 'gt', 0)
# Test generator
if config['training']['take_model_average']:
print('Taking model average')
bad_modules = [nn.BatchNorm1d, nn.BatchNorm2d, nn.BatchNorm3d]
for model in [generator, discriminator]:
for name, module in model.named_modules():
for bad_module in bad_modules:
if isinstance(module, bad_module):
print('Batch norm in discriminator not compatible with exponential moving average')
exit()
generator_test = copy.deepcopy(generator)
checkpoint_io.register_modules(generator_test=generator_test)
else:
generator_test = generator
clusterer = get_clusterer(config)(discriminator=discriminator,
x_cluster=x_cluster,
x_labels=y_cluster,
gt_nlabels=config['data']['nlabels'],
**config['clusterer']['kwargs'])
# Load checkpoint if it exists
it = utils.get_most_recent(checkpoint_dir, 'model') if args.model_it == -1 else args.model_it
it, epoch_idx, loaded_clusterer = checkpoint_io.load_models(it=it, load_samples='supervised' != config['clusterer']['name'])
if loaded_clusterer is None:
print('Initializing new clusterer. The first clustering can be quite slow.')
clusterer.recluster(discriminator=discriminator)
checkpoint_io.save_clusterer(clusterer, it=0)
np.savez(os.path.join(checkpoint_dir, 'cluster_samples.npz'), x=x_cluster)
else:
print('Using loaded clusterer')
clusterer = loaded_clusterer
# Evaluator
evaluator = Evaluator(
generator_test,
zdist,
ydist,
train_loader=train_loader,
clusterer=clusterer,
batch_size=batch_size,
device=device,
inception_nsamples=config['training']['inception_nsamples'])
# Trainer
trainer = Trainer(generator,
discriminator,
g_optimizer,
d_optimizer,
gan_type=config['training']['gan_type'],
reg_type=config['training']['reg_type'],
reg_param=config['training']['reg_param'])
# Training loop
print('Start training...')
while it < args.nepochs * len(train_loader):
epoch_idx += 1
for x_real, y in train_loader:
it += 1
x_real, y = x_real.to(device), y.to(device)
z = zdist.sample((batch_size, ))
y = clusterer.get_labels(x_real, y).to(device)
# Discriminator updates
dloss, reg = trainer.discriminator_trainstep(x_real, y, z)
logger.add('losses', 'discriminator', dloss, it=it)
logger.add('losses', 'regularizer', reg, it=it)
# Generators updates
gloss = trainer.generator_trainstep(y, z)
logger.add('losses', 'generator', gloss, it=it)
if config['training']['take_model_average']:
update_average(generator_test, generator, beta=config['training']['model_average_beta'])
# Print stats
if it % log_every == 0:
g_loss_last = logger.get_last('losses', 'generator')
d_loss_last = logger.get_last('losses', 'discriminator')
d_reg_last = logger.get_last('losses', 'regularizer')
print('[epoch %0d, it %4d] g_loss = %.4f, d_loss = %.4f, reg=%.4f'
% (epoch_idx, it, g_loss_last, d_loss_last, d_reg_last))
if it % config['training']['recluster_every'] == 0 and it > config['training']['burnin_time']:
# print cluster distribution for online methods
if it % 100 == 0 and config['training']['recluster_every'] <= 100:
print(f'[epoch {epoch_idx}, it {it}], distribution: {clusterer.get_label_distribution(x_real)}')
clusterer.recluster(discriminator=discriminator, x_batch=x_real)
# (i) Sample if necessary
if it % config['training']['sample_every'] == 0:
print('Creating samples...')
x = evaluator.create_samples(z_test, y_test)
x = evaluator.create_samples(z_test, clusterer.get_labels(x_test, y_test).to(device))
logger.add_imgs(x, 'all', it)
for y_inst in range(sample_nlabels):
x = evaluator.create_samples(z_test, y_inst)
logger.add_imgs(x, '%04d' % y_inst, it)
# (ii) Compute inception if necessary
if it % inception_every == 0 and it > 0:
print('PyTorch Inception score...')
inception_mean, inception_std = evaluator.compute_inception_score()
logger.add('metrics', 'pt_inception_mean', inception_mean, it=it)
logger.add('metrics', 'pt_inception_stddev', inception_std, it=it)
print(f'[epoch {epoch_idx}, it {it}] pt_inception_mean: {inception_mean}, pt_inception_stddev: {inception_std}')
# (iii) Backup if necessary
if it % backup_every == 0:
print('Saving backup...')
checkpoint_io.save('model_%08d.pt' % it, it=it)
checkpoint_io.save_clusterer(clusterer, int(it))
logger.save_stats('stats_%08d.p' % it)
if it > 0:
checkpoint_io.save('model.pt', it=it)
if __name__ == '__main__':
exit_if_job_done(out_dir)
main()
mark_job_done(out_dir)