From 71f7343db35c879eec32249dbfa2f2416baecf8a Mon Sep 17 00:00:00 2001 From: stertooy <5571903+stertooy@users.noreply.github.com> Date: Wed, 18 Dec 2024 19:51:31 +0100 Subject: [PATCH] Fix bug in makedoc --- makedoc.g | 4 +- tst/twistedconjugacy01.tst | 172 ------------------------------------- 2 files changed, 3 insertions(+), 173 deletions(-) delete mode 100644 tst/twistedconjugacy01.tst diff --git a/makedoc.g b/makedoc.g index e4c13ac3..ff3416cc 100644 --- a/makedoc.g +++ b/makedoc.g @@ -44,7 +44,9 @@ tstFile := Concatenation( if IsReadableFile( tstFile ) then Info( InfoGAPDoc, 1, "#I Testing examples found in manual.\n" ); - if Test( tstFile, rec( compareFunction := "uptowhitespace" ) ) then + correct := Test( tstFile, rec( compareFunction := "uptowhitespace" ) ); + RemoveFile( tstFile ); + if correct then Info( InfoGAPDoc, 1, "#I All examples correct.\n" ); else Info( InfoGAPDoc, 1, "#I One or more examples are incorrect.\n" ); diff --git a/tst/twistedconjugacy01.tst b/tst/twistedconjugacy01.tst deleted file mode 100644 index c18e1aa2..00000000 --- a/tst/twistedconjugacy01.tst +++ /dev/null @@ -1,172 +0,0 @@ -# TwistedConjugacy, file 1 -# -# DO NOT EDIT THIS FILE - EDIT EXAMPLES IN THE SOURCE INSTEAD! -# -# This file has been generated by AutoDoc. It contains examples extracted from -# the package documentation. Each example is preceded by a comment which gives -# the name of a GAPDoc XML file and a line range from which the example were -# taken. Note that the XML file in turn may have been generated by AutoDoc -# from some other input. -# -gap> START_TEST("twistedconjugacy01.tst"); - -# doc/_Chapter_twicon.xml:37-53 -gap> G := AlternatingGroup( 6 );; -gap> H := SymmetricGroup( 5 );; -gap> phi := GroupHomomorphismByImages( H, G, [ (1,2)(3,5,4), (2,3)(4,5) ], -> [ (1,2)(3,4), () ] );; -gap> psi := GroupHomomorphismByImages( H, G, [ (1,2)(3,5,4), (2,3)(4,5) ], -> [ (1,4)(3,6), () ] );; -gap> tc := TwistedConjugation( phi, psi );; -gap> g1 := (4,6,5);; -gap> g2 := (1,6,4,2)(3,5);; -gap> IsTwistedConjugate( psi, phi, g1, g2 ); -false -gap> h := RepresentativeTwistedConjugation( phi, psi, g1, g2 ); -(1,2) -gap> tc( g1, h ) = g2; -true - -# doc/_Chapter_twicon.xml:146-172 -gap> tcc := ReidemeisterClass( phi, psi, g1 ); -(4,6,5)^G -gap> Representative( tcc ); -(4,6,5) -gap> GroupHomomorphismsOfReidemeisterClass( tcc ); -[ [ (1,2)(3,5,4), (2,3)(4,5) ] -> [ (1,2)(3,4), () ], -[ (1,2)(3,5,4), (2,3)(4,5) ] -> [ (1,4)(3,6), () ] ] -gap> ActingDomain( tcc ) = H; -true -gap> FunctionAction( tcc )( g1, h ); -(1,6,4,2)(3,5) -gap> Random( tcc ) in tcc; -true -gap> List( tcc ); -[ (4,6,5), (1,6,4,2)(3,5) ] -gap> Size( tcc ); -2 -gap> StabiliserOfExternalSet( tcc ); -Group([ (1,2,3,4,5), (1,3,4,5,2) ]) -gap> ReidemeisterClasses( phi, psi ){[1..7]}; -[ ()^G, (4,5,6)^G, (4,6,5)^G, (3,4)(5,6)^G, (3,4,5)^G, (3,4,6)^G, (3,5,4)^G ] -gap> RepresentativesReidemeisterClasses( phi, psi ){[1..7]}; -[ (), (4,5,6), (4,6,5), (3,4)(5,6), (3,4,5), (3,4,6), (3,5,4) ] -gap> NrTwistedConjugacyClasses( phi, psi ); -184 - -# doc/_Chapter_twicon.xml:226-241 -gap> Q := QuaternionGroup( 8 );; -gap> D := DihedralGroup( 8 );; -gap> ReidemeisterSpectrum( Q ); -[ 2, 3, 5 ] -gap> ExtendedReidemeisterSpectrum( Q ); -[ 1, 2, 3, 5 ] -gap> CoincidenceReidemeisterSpectrum( Q ); -[ 1, 2, 3, 4, 5, 8 ] -gap> CoincidenceReidemeisterSpectrum( D, Q ); -[ 4, 8 ] -gap> CoincidenceReidemeisterSpectrum( Q, D ); -[ 2, 3, 4, 6, 8 ] -gap> TotalReidemeisterSpectrum( Q ); -[ 1, 2, 3, 4, 5, 6, 8 ] - -# doc/_Chapter_twicon.xml:288-302 -gap> khi := GroupHomomorphismByImages( G, G, [ (1,2,3,4,5), (4,5,6) ], -> [ (1,2,6,3,5), (1,4,5) ] );; -gap> ReidemeisterZetaCoefficients( khi ); -[ [ 7 ], [ ] ] -gap> IsRationalReidemeisterZeta( khi ); -true -gap> ReidemeisterZeta( khi ); -function( s ) ... end -gap> s := Indeterminate( Rationals, "s" );; -gap> ReidemeisterZeta( khi )(s); -(1)/(-s^7+7*s^6-21*s^5+35*s^4-35*s^3+21*s^2-7*s+1) -gap> PrintReidemeisterZeta( khi ); -"(1-s)^(-7)" - -# doc/_Chapter_mult.xml:28-45 -gap> H := SymmetricGroup( 5 );; -gap> G := AlternatingGroup( 6 );; -gap> tau := GroupHomomorphismByImages( H, G, [ (1,2)(3,5,4), (2,3)(4,5) ], -> [ (1,3)(4,6), () ] );; -gap> phi := GroupHomomorphismByImages( H, G, [ (1,2)(3,5,4), (2,3)(4,5) ], -> [ (1,2)(3,6), () ] );; -gap> psi := GroupHomomorphismByImages( H, G, [ (1,2)(3,5,4), (2,3)(4,5) ], -> [ (1,4)(3,6), () ] );; -gap> khi := GroupHomomorphismByImages( H, G, [ (1,2)(3,5,4), (2,3)(4,5) ], -> [ (1,2)(3,4), () ] );; -gap> IsTwistedConjugateMultiple( [ tau, phi ], [ psi, khi ], -> [ (1,5)(4,6), (1,4)(3,5) ], [ (1,4,5,3,6), (2,4,5,6,3) ] ); -true -gap> RepresentativeTwistedConjugationMultiple( [ tau, phi ], [ psi, khi ], -> [ (1,5)(4,6), (1,4)(3,5) ], [ (1,4,5,3,6), (2,4,5,6,3) ] ); -(1,2) - -# doc/_Chapter_homs.xml:39-57 -gap> G := SymmetricGroup( 6 );; -gap> Auts := RepresentativesAutomorphismClasses( G );; -gap> Size( Auts ); -2 -gap> ForAll( Auts, IsGroupHomomorphism and IsEndoMapping and IsBijective ); -true -gap> Ends := RepresentativesEndomorphismClasses( G );; -gap> Size( Ends ); -6 -gap> ForAll( Ends, IsGroupHomomorphism and IsEndoMapping ); -true -gap> H := SymmetricGroup( 5 );; -gap> Homs := RepresentativesHomomorphismClasses( H, G );; -gap> Size( Homs ); -6 -gap> ForAll( Homs, IsGroupHomomorphism ); -true - -# doc/_Chapter_homs.xml:86-97 -gap> phi := GroupHomomorphismByImages( G, G, [ (1,2,5,6,4), (1,2)(3,6)(4,5) ], -> [ (2,3,4,5,6), (1,2) ] );; -gap> Set( FixedPointGroup( phi ) ); -[ (), (1,2,3,6,5), (1,3,5,2,6), (1,5,6,3,2), (1,6,2,5,3) ] -gap> psi := GroupHomomorphismByImages( H, G, [ (1,2,3,4,5), (1,2) ], -> [ (), (1,2) ] );; -gap> khi := GroupHomomorphismByImages( H, G, [ (1,2,3,4,5), (1,2) ], -> [ (), (1,2)(3,4) ] );; -gap> CoincidenceGroup( psi, khi ) = AlternatingGroup( 5 ); -true - -# doc/_Chapter_homs.xml:122-137 -gap> G := PcGroupCode( 1018013, 28 );; -gap> phi := GroupHomomorphismByImages( G, G, [ G.1, G.3 ], -> [ G.1*G.2*G.3^2, G.3^4 ] );; -gap> N := DerivedSubgroup( G );; -gap> p := NaturalHomomorphismByNormalSubgroup( G, N ); -[ f1, f2, f3 ] -> [ f1, f2, of ... ] -gap> ind := InducedHomomorphism( p, p, phi ); -[ f1 ] -> [ f1*f2 ] -gap> Source( ind ) = Range( p ) and Range( ind ) = Range( p ); -true -gap> res := RestrictedHomomorphism( phi, N, N ); -[ f3 ] -> [ f3^4 ] -gap> Source( res ) = N and Range( res ) = N; -true - -# doc/_Chapter_csts.xml:22-32 -gap> G := ExamplesOfSomePcpGroups( 5 );; -gap> H := Subgroup( G, [ G.1*G.2^-1*G.3^-1*G.4^-1, G.2^-1*G.3*G.4^-2 ] );; -gap> K := Subgroup( G, [ G.1*G.3^-2*G.4^2, G.1*G.4^4 ] );; -gap> x := G.1*G.3^-1;; -gap> y := G.1*G.2^-1*G.3^-2*G.4^-1;; -gap> Hx := RightCoset( H, x );; -gap> Ky := RightCoset( K, y );; -gap> Intersection( Hx, Ky ); -RightCoset(,) - -# doc/_Chapter_csts.xml:49-55 -gap> HxK := DoubleCoset( H, x, K );; -gap> G.1 in HxK; -false -gap> G.2 in HxK; -true - -# -gap> STOP_TEST("twistedconjugacy01.tst", 1);