forked from grbl/grbl
-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathserial.c
267 lines (216 loc) · 6.9 KB
/
serial.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
/*
serial.c - Low level functions for sending and recieving bytes via the serial port.
Part of LasaurGrbl
Copyright (c) 2009-2011 Simen Svale Skogsrud
Copyright (c) 2011 Sungeun K. Jeon
Copyright (c) 2011 Stefan Hechenberger
Inspired by the wiring_serial module by David A. Mellis which
used to be a part of the Arduino project.
LasaurGrbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
LasaurGrbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
*/
#include <avr/interrupt.h>
#include <util/atomic.h>
#include <avr/sleep.h>
#include <math.h>
#include "serial.h"
#include "config.h"
#include "stepper.h"
#include "gcode.h"
#define CHAR_STOP '!'
#define CHAR_RESUME '~'
/** ring buffer **********************************
* [_][h][e][l][l][o][_][_][_] -> wrap around *
* | | *
* tail head *
* (read) (write) *
* *
* buffer empty condition: head == tail *
* buffer full condition: (head+1)%size == tail *
* buffer write: if(!full) {buf[head] = item} *
* buffer read: if(!empty) {return buf[tail]} *
*************************************************/
#define RX_BUFFER_SIZE 255
#define TX_BUFFER_SIZE 128
uint8_t rx_buffer[RX_BUFFER_SIZE];
volatile uint8_t rx_buffer_head = 0;
volatile uint8_t rx_buffer_tail = 0;
volatile uint8_t rx_buffer_open_slots = RX_BUFFER_SIZE - 1;
uint8_t tx_buffer[TX_BUFFER_SIZE];
volatile uint8_t tx_buffer_head = 0;
volatile uint8_t tx_buffer_tail = 0;
/** protocol *************************************
* The sending app initiates any stream by *
* requesting a ready byte. This serial code then *
* sends one as soon as there are RX_CHUNK_SIZE *
* slots available in the rx buffer. The sending *
* app can then send this amount of bytes. *
* Thereafter it can again request a ready byte *
* and apon receiving it send the next chunk. *
*************************************************/
#define CHAR_READY '\x12'
#define CHAR_REQUEST_READY '\x14'
#define RX_CHUNK_SIZE 64
volatile uint8_t send_ready_flag = 0;
volatile uint8_t request_ready_flag = 0;
static void set_baud_rate(long baud) {
uint16_t UBRR0_value = ((F_CPU / 16 + baud / 2) / baud - 1);
UBRR0H = UBRR0_value >> 8;
UBRR0L = UBRR0_value;
}
void serial_init() {
set_baud_rate(BAUD_RATE);
/* baud doubler off - Only needed on Uno XXX */
UCSR0A &= ~(1 << U2X0);
// enable rx and tx
UCSR0B |= 1<<RXEN0;
UCSR0B |= 1<<TXEN0;
// enable interrupt on complete reception of a byte
UCSR0B |= 1<<RXCIE0;
// defaults to 8-bit, no parity, 1 stop bit
printPgmString(PSTR("# LasaurGrbl " LASAURGRBL_VERSION));
printPgmString(PSTR("\n"));
}
void serial_write(uint8_t data) {
// Calculate next head
uint8_t next_head = tx_buffer_head + 1;
if (next_head == TX_BUFFER_SIZE) { next_head = 0; } // wrap around
// wait, if buffer is full
while (next_head == tx_buffer_tail) {
// sleep_mode();
}
// Store data and advance head
tx_buffer[tx_buffer_head] = data;
tx_buffer_head = next_head;
UCSR0B |= (1 << UDRIE0); // enable tx interrupt
}
// tx interrupt, called when UDR0 gets empty
SIGNAL(USART_UDRE_vect) {
uint8_t tail = tx_buffer_tail; // optimize for volatile
if (send_ready_flag) { // request another chunk of data
UDR0 = CHAR_READY;
send_ready_flag = 0;
} else { // Send a byte from the buffer
UDR0 = tx_buffer[tail];
if (++tail == TX_BUFFER_SIZE) {tail = 0;} // increment
tx_buffer_tail = tail;
}
// disable tx interrupt, if buffer empty
if (tail == tx_buffer_head) { UCSR0B &= ~(1 << UDRIE0); }
}
uint8_t serial_read() {
// wait, if buffer is empty
while (rx_buffer_tail == rx_buffer_head) {
// sleep_mode();
}
// return return data, advance tail
uint8_t data = rx_buffer[rx_buffer_tail];
if (++rx_buffer_tail == RX_BUFFER_SIZE) {rx_buffer_tail = 0;} // increment
ATOMIC_BLOCK(ATOMIC_FORCEON) {
if (rx_buffer_open_slots == RX_CHUNK_SIZE) { // enough slots opening up
if (request_ready_flag) {
send_ready_flag = 1;
UCSR0B |= (1 << UDRIE0); // enable tx interrupt
request_ready_flag = 0;
}
}
rx_buffer_open_slots++;
}
return data;
}
// rx interrupt, called whenever a new byte is in UDR0
SIGNAL(USART_RX_vect) {
uint8_t data = UDR0;
if (data == CHAR_STOP) {
// special stop character, bypass buffer
stepper_request_stop(STATUS_SERIAL_STOP_REQUEST);
} else if (data == CHAR_RESUME) {
// special resume character, bypass buffer
stepper_stop_resume();
} else if (data == CHAR_REQUEST_READY) {
if (rx_buffer_open_slots > RX_CHUNK_SIZE) {
send_ready_flag = 1;
UCSR0B |= (1 << UDRIE0); // enable tx interrupt
} else {
// send ready when enough slots open up
request_ready_flag = 1;
}
} else {
uint8_t head = rx_buffer_head; // optimize for volatile
uint8_t next_head = head + 1;
if (next_head == RX_BUFFER_SIZE) {next_head = 0;}
if (next_head == rx_buffer_tail) {
// buffer is full, other side sent too much data
stepper_request_stop(STATUS_RX_BUFFER_OVERFLOW);
} else {
rx_buffer[head] = data;
rx_buffer_head = next_head;
rx_buffer_open_slots--;
}
}
}
uint8_t serial_available() {
return RX_BUFFER_SIZE - rx_buffer_open_slots;
}
void printString(const char *s) {
while (*s) {
serial_write(*s++);
}
}
// Print a string stored in PGM-memory
void printPgmString(const char *s) {
char c;
while ((c = pgm_read_byte_near(s++))) {
serial_write(c);
}
}
void printIntegerInBase(unsigned long n, unsigned long base) {
unsigned char buf[8 * sizeof(long)]; // Assumes 8-bit chars.
unsigned long i = 0;
if (n == 0) {
serial_write('0');
return;
}
while (n > 0) {
buf[i++] = n % base;
n /= base;
}
for (; i > 0; i--) {
serial_write(buf[i - 1] < 10 ?
'0' + buf[i - 1] :
'A' + buf[i - 1] - 10);
}
}
void printInteger(long n) {
if (n < 0) {
serial_write('-');
n = -n;
}
printIntegerInBase(n, 10);
}
void printFloat(double n) {
if (n < 0) {
serial_write('-');
n = -n;
}
n += 0.5/1000; // Add rounding factor
long integer_part;
integer_part = (int)n;
printIntegerInBase(integer_part,10);
serial_write('.');
n -= integer_part;
int decimals = 3;
uint8_t decimal_part;
while(decimals-- > 0) {
n *= 10;
decimal_part = (int) n;
serial_write('0'+decimal_part);
n -= decimal_part;
}
}