-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathdemo_video.py
207 lines (164 loc) · 7.63 KB
/
demo_video.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import os
import cv2
import json
import argparse
import warnings
from torch.utils.data import DataLoader
from demo.utils import *
from demo.dataset import MultiPeopleDataset
from score_hmr.utils import *
from score_hmr.configs import model_config
from score_hmr.utils.geometry import aa_to_rotmat
from score_hmr.models.model_utils import load_diffusion_model, load_pare
from score_hmr.utils.mesh_renderer import MeshRenderer
warnings.filterwarnings('ignore')
LIGHT_BLUE=(0.65098039, 0.74117647, 0.85882353)
NUM_SAMPLES = 1
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--input_video", type=str, default="example_data/videos/breakdancing.mp4", help="Path of the input video.")
parser.add_argument("--out_folder", type=str, default="demo_out/videos", help="Path to save the output video.")
parser.add_argument("--overwrite", action="store_true", default=False, help="If set, overwrite the 4D-Human tracklets.")
parser.add_argument('--save_mesh', action='store_true', default=False, help='If set, save meshes to disk.')
parser.add_argument("--fps", type=int, default=30, help="Frame rate to save the output video.")
args = parser.parse_args()
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
OUT_DIR = args.out_folder
video_name = os.path.basename(args.input_video)
filename, _ = os.path.splitext(video_name)
img_dir = f'{OUT_DIR}/images/{filename}'
# Extract the frames of the input video.
if not os.path.isdir(img_dir):
video_to_frames(path=args.input_video, out_dir=img_dir)
# Detects shots, runs 4D-Humans tracking, detects 2D with ViTPose, and prepares all necessary files.
process_seq(out_root=OUT_DIR, seq=args.input_video, img_dir=img_dir, overwrite=args.overwrite)
# Get the number of shots in the video.
shots_path = f'{OUT_DIR}/shot_idcs/{filename}.json'
with open(shots_path, "r") as f:
shots_dict = json.load(f)
num_shots = max(shots_dict.values())
# ----------------------------------------
### Prepare ScoreHMR ###
# Load config.
model_cfg = model_config()
# Load PARE model.
pare = load_pare(model_cfg.SMPL).to(device)
pare.eval()
img_feat_standarizer = StandarizeImageFeatures(
backbone=model_cfg.MODEL.DENOISING_MODEL.IMG_FEATS,
use_betas=False,
device=device,
)
# Load diffusion model.
extra_args = {
"keypoint_guidance": True,
"temporal_guidance": True,
"use_default_ckpt": True,
"device": device,
}
diffusion_model = load_diffusion_model(model_cfg, **extra_args)
# ----------------------------------------
# Set up renderer.
renderer = MeshRenderer(model_cfg, faces=diffusion_model.smpl.faces)
## Iterate over shots in the video ##
for shot_idx in range(num_shots+1):
data_sources = {
"images": f"{OUT_DIR}/images/{filename}",
"tracks": f"{OUT_DIR}/track_preds/{filename}",
"shots": f"{OUT_DIR}/shot_idcs/{filename}.json",
}
# Create dataset.
dataset = MultiPeopleDataset(data_sources=data_sources, seq_name=filename, shot_idx=shot_idx)
# Ignore shots with no tracklets or not long enough tracklets.
if len(dataset.track_ids) <= 0 or dataset.num_imgs <= 20:
continue
B = len(dataset) # number of people
T = dataset.seq_len # number of frames
loader = DataLoader(dataset, batch_size=B, shuffle=False)
obs_data = recursive_to(next(iter(loader)), device)
num_tracks = obs_data["track_id"].size(0)
pred_cam_t_all = torch.zeros((B, T, 3))
pred_vertices_all = torch.zeros((B, T, 6890, 3))
## Iterate over tracklets ##
for track_idx in range(num_tracks):
# Get the the data for the current tracklet.
batch = slice_dict(obs_data, track_idx)
start_idx, end_idx = batch["track_interval"]
start_idx = start_idx.item()
end_idx = end_idx.item()
# Keep only the valid data of the tracklet.
batch = slice_dict_start_end(batch, start_idx, end_idx)
batch_size = batch["keypoints_2d"].size(0)
batch["img_size"] = (
torch.Tensor(dataset.img_size)
.unsqueeze(0)
.repeat(batch_size, 1)
.to(device)
)
batch["camera_center"] = batch["img_size"] / 2
global_orient_rotmat = aa_to_rotmat(batch["init_root_orient"]).reshape(batch_size, -1, 3, 3)
body_pose_rotmat = aa_to_rotmat(batch["init_body_pose"].reshape(-1, 3)).reshape(batch_size, -1, 3, 3)
batch["pred_pose"] = torch.cat((global_orient_rotmat, body_pose_rotmat), dim=1)
focal_length = model_cfg.EXTRA.FOCAL_LENGTH * torch.ones(
batch_size,
2,
device=device,
dtype=batch["keypoints_2d"].dtype,
)
batch["focal_length"] = focal_length
# Get PARE image features.
with torch.no_grad():
pare_out = pare(batch["img"], get_feats=True)
cond_feats = pare_out["pose_feats"].reshape(batch_size, -1)
cond_feats = img_feat_standarizer(cond_feats) # normalize image features
batch["init_cam_t"] = batch["pred_cam_t"]
batch["joints_2d"] = batch["keypoints_2d"][:, :, :2]
batch["joints_conf"] = batch["keypoints_2d"][:, :, [2]]
# Iterative refinement with ScoreHMR.
print(f'=> Running ScoreHMR for tracklet {track_idx+1}/{num_tracks}')
with torch.no_grad():
dm_out = diffusion_model.sample(
batch, cond_feats, batch_size=batch_size * NUM_SAMPLES
)
pred_smpl_params = prepare_smpl_params(
dm_out['x_0'],
num_samples = NUM_SAMPLES,
use_betas = False,
pred_betas=batch["pred_betas"],
)
smpl_out = diffusion_model.smpl(**pred_smpl_params, pose2rot=False)
pred_cam_t_all[track_idx, start_idx:end_idx] = dm_out['camera_translation'].cpu()
pred_vertices_all[track_idx, start_idx:end_idx] = smpl_out.vertices.cpu()
# Save meshes as OBJ files.
if args.save_mesh:
verts = smpl_out.vertices.cpu().numpy()
cam_t = dm_out['camera_translation'].cpu().numpy()
person_id = str(batch['track_id'].item()).zfill(3)
tmesh_path = f"{OUT_DIR}/mesh_output/{filename}/{person_id}"
print(f'=> Saving mesh files for {person_id} in {tmesh_path}')
os.makedirs(tmesh_path, exist_ok=True)
for ii, (vvv, ttt) in enumerate(zip(verts, cam_t)):
tmesh = renderer.vertices_to_trimesh(vvv, ttt, LIGHT_BLUE)
frame_id = str(ii + start_idx + 1).zfill(6)
tmesh.export(f'{tmesh_path}/{frame_id}.obj')
# Save output video.
frame_list = create_visuals(
renderer,
pred_vertices_all.numpy(),
pred_cam_t_all.numpy(),
dataset.sel_img_paths,
)
height, width, _ = frame_list[0].shape
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
os.makedirs(f"{OUT_DIR}", exist_ok=True)
video_writer = cv2.VideoWriter(
f"{OUT_DIR}/{filename}_{shot_idx}.mp4",
fourcc,
args.fps,
(width, height),
)
for frame in frame_list:
video_writer.write(cv2.convertScaleAbs(frame))
video_writer.release()
if __name__ == "__main__":
main()