-
Notifications
You must be signed in to change notification settings - Fork 68
/
Copy pathutilsPlotting.py
209 lines (172 loc) · 7.36 KB
/
utilsPlotting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
'''
---------------------------------------------------------------------------
OpenCap processing: utilsPlotting.py
---------------------------------------------------------------------------
Copyright 2022 Stanford University and the Authors
Author(s): Antoine Falisse, Scott Uhlrich
Licensed under the Apache License, Version 2.0 (the "License"); you may not
use this file except in compliance with the License. You may obtain a copy
of the License at http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
'''
import numpy as np
import matplotlib.pyplot as plt
def plot_dataframe(dataframes, x=None, y=[], xlabel=None, ylabel=None,
labels=None, title=None, xrange=None):
# Handle case specific number of subplots.
if not x and not y:
nRow = int(np.ceil(np.sqrt(dataframes[0].shape[1]-1)))
nCol = int(np.ceil(np.sqrt(dataframes[0].shape[1]-1)))
if not xlabel:
xlabel = list(dataframes[0].columns)[0]
x = 'time'
y = list(dataframes[0].columns)[1:]
elif not x and y:
nRow = int(np.ceil(np.sqrt(len(y))))
nCol = int(np.ceil(np.sqrt(len(y))))
if not xlabel:
xlabel = list(dataframes[0].columns)[0]
x = 'time'
else:
nRow = int(np.ceil(np.sqrt(len(y))))
nCol = int(np.ceil(np.sqrt(len(y))))
if not xlabel:
xlabel = x
if not ylabel:
ylabel = y[0]
if nRow >= len(y):
nRow = 1
nAxs = len(y)
# Labels for legend.
if not labels:
labels = ['dataframe_' + str(i) for i in range(len(dataframes))]
elif len(labels) != len(dataframes):
print("WARNING: The number of labels ({}) does not match the number of input dataframes ({})".format(len(labels), len(dataframes)))
labels = ['dataframe_' + str(i) for i in range(dataframes)]
if nCol == 1: # Single plot.
fig = plt.figure()
color=iter(plt.cm.rainbow(np.linspace(0,1,len(dataframes))))
for c, dataframe in enumerate(dataframes):
c_color = next(color)
plt.plot(dataframe[x], dataframe[y], c=c_color, label=labels[c])
if xrange is not None:
plt.xlim(xrange)
else: # Multiple subplots.
fig, axs = plt.subplots(nRow, nCol, sharex=True)
for i, ax in enumerate(axs.flat):
color=iter(plt.cm.rainbow(np.linspace(0,1,len(dataframes))))
if i < nAxs:
for c, dataframe in enumerate(dataframes):
c_color = next(color)
ax.plot(dataframe[x], dataframe[y[i]], c=c_color, label=labels[c])
ax.set_title(y[i])
if xrange is not None:
plt.xlim(xrange)
if i == 0:
handles, labels = ax.get_legend_handles_labels()
# Axis labels and legend.
if nRow > 1 and nCol > 1:
plt.setp(axs[-1, :], xlabel=xlabel)
plt.setp(axs[:, 0], ylabel=ylabel)
axs[0][0].legend(handles, labels)
elif nRow == 1 and nCol > 1:
plt.setp(axs[:,], xlabel=xlabel)
plt.setp(axs[0,], ylabel=ylabel)
axs[0,].legend(handles, labels)
else:
plt.xlabel(xlabel)
plt.ylabel(ylabel)
plt.legend(labels)
if nRow == 1 and nCol == 1:
# Add figure title.
if title:
plt.title(title)
else:
# Add figure title.
if title:
fig.suptitle(title)
# Align labels.
fig.align_ylabels()
# Hidde empty subplots.
nEmptySubplots = (nRow*nCol) - len(y)
axs_flat = axs.flat
for ax in (axs_flat[len(axs_flat)-nEmptySubplots:]):
ax.set_visible(False)
# Tight layout (should make figure big enough first).
# fig.tight_layout()
# Show plot (needed if running through terminal).
plt.show()
def plot_dataframe_with_shading(mean_dataframe, sd_dataframe=None, y=None,
leg=None, xlabel=None, title=None, legend_entries=None):
if not isinstance(mean_dataframe, list):
mean_dataframe = [mean_dataframe]
if sd_dataframe is not None:
if not isinstance(sd_dataframe, list):
sd_dataframe = [sd_dataframe]
if not isinstance(leg, list):
leg = [leg] * len(mean_dataframe)
if y is None:
y = [col for col in mean_dataframe[0].columns if col != 'time']
columns = [col for col in y if not any(sub in col for sub in ['_beta', 'mtp', 'time'])]
if leg[0] == 'r':
columns = [col for col in columns if not col.endswith('_l')]
elif leg[0] == 'l':
columns = [col for col in columns if not col.endswith('_r')]
num_columns = len(columns)
num_rows = (num_columns + 3) // 4 # Always 4 columns per row
colormap = plt.cm.get_cmap('viridis', len(mean_dataframe))
fig, axes = plt.subplots(num_rows, 4, figsize=(12, 8))
axes = axes.flatten()
for i, column in enumerate(columns):
row = i // 4
ax = axes[i]
for j, (mean_df, sd_df) in enumerate(zip(mean_dataframe, sd_dataframe)):
if len(mean_dataframe) > 1:
color = np.multiply(colormap(j),.7) # avoid yellow at end of viridis
else:
color = 'black'
if leg[j] is not None and (column.endswith('_r') or column.endswith('_l')):
col=column[:-2] + '_' + leg[j]
colLabel = column[:-2]
else:
col = column
colLabel = column
mean_values = mean_df[col]
if legend_entries is None:
thisLegend = []
else:
thisLegend = legend_entries[j]
ax.plot(mean_values, color=color, label=thisLegend)
# Check if sd_df is not None before plotting
if sd_df is not None:
sd_column = col
if sd_column in sd_df.columns:
sd_values = sd_df[sd_column]
ax.fill_between(
range(len(mean_values)),
mean_values - sd_values,
mean_values + sd_values,
color=color,
alpha=0.3,
linewidth=0, # Remove surrounding line
)
ax.set_xlabel(xlabel if row == num_rows - 1 else None, fontsize=12)
ax.set_ylabel(colLabel, fontsize=12)
# Increase font size for axis labels
ax.tick_params(axis='both', which='major', labelsize=10)
# Create the legend in the first subplot if legend_entries is provided
if legend_entries:
axes[0].legend()
# Remove any unused subplots
if num_columns < num_rows * 4:
for i in range(num_columns, num_rows * 4):
fig.delaxes(axes[i])
# Title
if title is not None:
fig.suptitle(title)
plt.tight_layout()
plt.show()