-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconvert_BIDS_to_nnunet_format.py
255 lines (207 loc) · 11.4 KB
/
convert_BIDS_to_nnunet_format.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
"""
This script is based on https://github.com/ivadomed/utilities/blob/main/dataset_conversion/convert_bids_to_nnUNetV2.py
Converts BIDS-structured dataset to the nnUNetv2 dataset format. Full details about
the format can be found here: https://github.com/MIC-DKFZ/nnUNet/blob/master/documentation/dataset_format.md
Naga Karthik, Jan Valosek, Théo Mathieu modified by Nathan Molinier
"""
import argparse
import pathlib
from pathlib import Path
import json
import os
from collections import OrderedDict
from loguru import logger
import numpy as np
from progress.bar import Bar
from utils import CONTRAST, get_img_path_from_label_path, fetch_subject_and_session, fetch_contrast
from image import Image
def get_parser():
# parse command line arguments
parser = argparse.ArgumentParser(description='Convert BIDS-structured dataset to nnUNetV2 database format.')
parser.add_argument('--config', required=True, help='Config JSON file where every label used for TRAINING, VALIDATION and TESTING has its path specified ~/<your_path>/config_data.json (Required)')
parser.add_argument('--path-out', required=True, help='Path to output directory. Example: ~/data/dataset-nnunet (Required)')
parser.add_argument('--dataset-name', '-dname', default='MyDataset', type=str,
help='Specify the task name. (Default=MyDataset)')
parser.add_argument('--dataset-number', '-dnum', default=501, type=int,
help='Specify the task number, has to be greater than 500 but less than 999. (Default=501)')
parser.add_argument('--registered', default=False, type=bool,
help='Set this variable to True if all the modalities/contrasts are available and corregistered for every subject (Default=False)')
parser.add_argument('--one-class', default=False, type=bool,
help='Set this variable to True if all the discs are part of the same class (Default=False)')
return parser
def convert_subjects(list_labels, path_out_images, path_out_labels, channel_dict, DS_name, counter_indent=0, one_class=False):
"""Function to get image from original BIDS dataset modify if needed and place
it with a compatible name in nnUNet dataset.
Args:
list_labels (list): List containing the paths of training/testing labels in the nnUNetv2 format.
path_out_images (str): path to the images directory in the new dataset (test or train).
path_out_labels (str): path to the labels directory in the new dataset (test or train).
channel_dict (dict): Association dictionary between MRI contrasts and integer values compatible with nnUNet documentation (ex: T1w = 1, T2w = 2, FLAIR = 3).
DS_name (str): Dataset name.
counter_indent (int): indent for file numbering.
Returns:
counter (int): Last file number used
nb_class (int): Maximum number of class
"""
nb_class = 0
counter = counter_indent
# Init progression bar
bar = Bar('Convert data ', max=len(list_labels))
for label_path in list_labels:
img_path = get_img_path_from_label_path(label_path)
if not os.path.exists(img_path) or not os.path.exists(label_path):
print(f'Error while loading subject\n {img_path} or {label_path} might not exist --> skipping subject')
else:
# Load and reorient image and label to RSP
label = Image(label_path).change_orientation('RSP')
img = Image(img_path).change_orientation('RSP')
if img.data.shape == label.data.shape:
# Increment counter for every path --> different from nnunet conventional use where the same number is the same for every subject (but need full registration)
# TODO: fix this case to keep the subject number for each contrast
counter+=1
# Extract information from the img_path
sub_name, sessionID, filename, modality = fetch_subject_and_session(img_path)
# Extract contrast from channel_dict
if 'multi_contrasts' in channel_dict.keys():
contrast = 'multi_contrasts'
else:
contrast = fetch_contrast(img_path)
# Create new nnunet paths
nnunet_label_path = os.path.join(path_out_labels, f"{DS_name}-{sub_name}_{counter:03d}.nii.gz")
nnunet_img_path = os.path.join(path_out_images, f"{DS_name}-{sub_name}_{counter:03d}_{channel_dict[contrast]:04d}.nii.gz")
# Create new discs masks with spots instead of single points
label_mask, max_label = create_disc_mask(label, one_class=one_class)
# Update number of class
if one_class:
nb_class = 1
elif max_label > nb_class:
nb_class = max_label
# Save images
label_mask.save(nnunet_label_path)
img.save(nnunet_img_path)
else:
print(f'Error while loading subject\n {img_path} and {label_path} don"t have the same shape --> skipping subject')
# Plot progress
bar.suffix = f'{list_labels.index(label_path)+1}/{len(list_labels)}'
bar.next()
bar.finish()
return counter, nb_class+1 # +1 to add the background
def create_disc_mask(label, one_class, radius=2):
"""
Transform discs labels into discs masks with bigger spherical spots
:param label: Image object of disc labels
"""
# Create new numpy array
new_label = np.zeros_like(label.data)
# Get label dimensions
nx, ny, nz, nt, px, py, pz, pt = label.dim
# Loop in labels list
max_label = 0
for coord in label.getNonZeroCoordinates(sorting='value'):
if coord[-1] <= 25: # Remove labels superior to 25, especially 49 and 50 that correspond to the pontomedullary groove (49) and junction (50)
if coord[-1] > max_label: # Extract max label
max_label = coord[-1]
x0, y0, z0, value = coord
x, y, z = np.mgrid[0:nx:1,0:ny:1,0:nz:1]
mask = ((px*(x-x0))**2 + (py*(y-y0))**2 + (pz*(z-z0))**2) <= radius**2
new_label[mask] = value if not one_class else 1
# Update label with new created mask
label.data = new_label
return label, max_label
def main():
parser = get_parser()
args = parser.parse_args()
DS_name = args.dataset_name
path_out = Path(os.path.join(os.path.abspath(os.path.expanduser(args.path_out)),
f'Dataset{args.dataset_number:03d}_{args.dataset_name}'))
# Read json file and create a dictionary
with open(args.config, "r") as file:
config = json.load(file)
# To use channel dict with different modalities/contrasts, images need to be corregistered and all modalities/contrasts
# need to be available.
channel_dict = {}
if args.registered:
for i, contrast in enumerate(CONTRAST[config['CONTRASTS']]):
channel_dict[contrast] = i
else:
channel_dict['multi_contrasts'] = 0
# create individual directories for train and test images and labels
path_out_imagesTr = Path(os.path.join(path_out, 'imagesTr'))
path_out_imagesTs = Path(os.path.join(path_out, 'imagesTs'))
path_out_labelsTr = Path(os.path.join(path_out, 'labelsTr'))
path_out_labelsTs = Path(os.path.join(path_out, 'labelsTs'))
train_labels = config['TRAINING'] + config['VALIDATION']
test_labels = config['TESTING']
# make the directories
pathlib.Path(path_out).mkdir(parents=True, exist_ok=True)
pathlib.Path(path_out_imagesTr).mkdir(parents=True, exist_ok=True)
pathlib.Path(path_out_imagesTs).mkdir(parents=True, exist_ok=True)
pathlib.Path(path_out_labelsTr).mkdir(parents=True, exist_ok=True)
pathlib.Path(path_out_labelsTs).mkdir(parents=True, exist_ok=True)
# Convert training and validation subjects to nnunet format
counter_train, nb_class_train = convert_subjects(list_labels=train_labels,
path_out_images=path_out_imagesTr,
path_out_labels=path_out_labelsTr,
channel_dict=channel_dict,
DS_name=DS_name,
one_class=args.one_class)
# Convert testing subjects to nnunet format
counter_test, nb_class_test = convert_subjects(list_labels=test_labels,
path_out_images=path_out_imagesTs,
path_out_labels=path_out_labelsTs,
channel_dict=channel_dict,
DS_name=DS_name,
counter_indent=counter_train,
one_class=args.one_class)
logger.info(f"Number of training and validation subjects: {counter_train}")
logger.info(f"Number of test subjects: {counter_test-counter_train}")
# c.f. dataset json generation
# In nnUNet V2, dataset.json file has become much shorter. The description of the fields and changes
# can be found here: https://github.com/MIC-DKFZ/nnUNet/blob/master/documentation/dataset_format.md#datasetjson
# this file can be automatically generated using the following code here:
# https://github.com/MIC-DKFZ/nnUNet/blob/master/nnunetv2/dataset_conversion/generate_dataset_json.py
# example: https://github.com/MIC-DKFZ/nnUNet/blob/master/nnunet/dataset_conversion/Task055_SegTHOR.py
json_dict = OrderedDict()
# The following keys are the most important ones.
"""
channel_names:
Channel names must map the index to the name of the channel. For BIDS, this refers to the contrast suffix.
{
"0": "FLAIR",
"1": "T1w",
"2": "T2",
"3": "T2w"
}
Note that the channel names may influence the normalization scheme!! Learn more in the documentation.
labels:
This will tell nnU-Net what labels to expect. Important: This will also determine whether you use region-based
training or not.
Example regular labels:
{
'background': 0,
'left atrium': 1,
'some other label': 2
}
Example region-based training:
https://github.com/MIC-DKFZ/nnUNet/blob/master/documentation/region_based_training.md
{
'background': 0,
'whole tumor': (1, 2, 3),
'tumor core': (2, 3),
'enhancing tumor': 3
}
Remember that nnU-Net expects consecutive values for labels! nnU-Net also expects 0 to be background!
"""
json_dict['channel_names'] = {v: k for k, v in channel_dict.items()}
json_dict['labels'] = {"background": 0}
# Adding discs number as individual classes
for num_disc in range(max(nb_class_train, nb_class_test)-1): # -1 to remove background
json_dict['labels'][f'disc_{num_disc+1}'] = num_disc+1
json_dict["numTraining"] = counter_train
# Needed for finding the files correctly. IMPORTANT! File endings must match between images and segmentations!
json_dict['file_ending'] = ".nii.gz"
json_dict["overwrite_image_reader_writer"] = "SimpleITKIO"
# create dataset.json
json.dump(json_dict, open(os.path.join(path_out, "dataset.json"), "w"), indent=4)
if __name__ == '__main__':
main()