-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathonet_news.py
221 lines (156 loc) · 6.6 KB
/
onet_news.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
from multiprocessing import set_start_method
from multiprocessing.pool import Pool
import requests
import os
from lm_dataformat import Archive
import shutil
import spacy
import json
import glob
import urllib.robotparser
import time
from datetime import datetime
import justext
from bs4 import BeautifulSoup
import datetime
def query_onet_news():
date = datetime.date(2000,1,1)
url = 'https://wiadomosci.onet.pl/archiwum/'
while date <= datetime.date.today():
response = requests.get(url+date.strftime("%Y-%m-%d"))
if not response.ok:
print("Archive response error...retrying")
time.sleep(10)
response = requests.get(url+date.strftime("%Y-%m-%d"))
if response.ok:
soup = BeautifulSoup(response.content, "html.parser")
results = soup.find_all("ul", class_="dayInArchive")
for res in results:
for li in res.find_all("li"):
for a in li.find_all("a", class_="itemTitle"):
title = a.text
item_url = a["href"]
yield title, item_url
date = date + datetime.timedelta(days=1)
return
def get_item_text(url:str):
response = requests.get(url)
text = ''
if not response.ok:
print("Item response error...retrying")
time.sleep(10)
response = requests.get(url)
if response.ok:
paragraphs = justext.justext(response.content, justext.get_stoplist("Polish"), max_heading_distance=150, length_low=70, length_high=140, stopwords_low=0.2, stopwords_high=0.3, max_link_density=0.4)
for paragraph in paragraphs:
if not paragraph.is_boilerplate:
text += (paragraph.text+" ")
else:
print("Error -> "+url)
return text
def get_word_stats(txt):
if not txt:
return 0, 0, 0, 0, 0, 0, 0
sentences = 0
words = 0
verbs = 0
nouns = 0
punctuations = 0
symbols = 0
stopwords = 0
doc = nlp(txt)
sentences = len(list(doc.sents))
words = len([token.text for token in doc if not token.is_punct])
nouns = len([token.text for token in doc if (not token.is_stop and not token.is_punct and token.pos_ == "NOUN")])
verbs = len([token.text for token in doc if (not token.is_stop and not token.is_punct and token.pos_ == "VERB")])
punctuations = len([token.text for token in doc if (token.is_punct or token.pos_ == "PUNCT")])
symbols = len([token.text for token in doc if (token.pos_ == "SYM")])
stopwords = len([token.text for token in doc if token.is_stop])
return sentences, words, verbs, nouns, punctuations, symbols, stopwords
def process_item(book_info):
title = book_info[0]
item_url = book_info[1]
meta = {}
txt = ''
ok = False
print(title)
try:
txt = get_item_text(item_url)
if txt:
ok = True
l = len(txt.strip())
if l > 100000:
nlp.max_length = len(txt) + 100
sentences, words, verbs, nouns, punctuations, symbols, stopwords = get_word_stats(txt.strip())
meta = {'url' : item_url, 'title': title, 'length': l, 'sentences': sentences, 'words': words, 'verbs': verbs, 'nouns': nouns, 'punctuations': punctuations, 'symbols': symbols, 'stopwords': stopwords}
except:
ok = False
print("Error processing item -> "+item_url)
finally:
return ok, txt.strip(), meta
def initialize_worker():
print('Initializing worker...')
#Each worker node needs to have its own resources.
global nlp
global rp
rp = urllib.robotparser.RobotFileParser()
rp.set_url('https://www.komputerswiat.pl/robots.txt')
rp.read()
#Disabling some unused model features speeds things up to 20%
nlp = spacy.load("pl_core_news_md", disable=('ner','lemmatizer','textcat','entity_linker'))
if __name__ == '__main__':
set_start_method("spawn")
start_time = time.time()
ar = Archive('./data')
file_name_zst = './onet_pl_news_corpus.jsonl.zst'
file_name_manifest = './onet_pl_news_corpus.manifest'
total_len = 0
total_docs = 0
total_sentences = 0
total_words = 0
total_verbs = 0
total_nouns = 0
total_punctuations = 0
total_symbols = 0
total_stopwords = 0
total = 0
added = 0
# create and configure the process pool. All available resources are used by default
with Pool(initializer=initialize_worker, processes=os.cpu_count(), maxtasksperchild=1000) as pool:
# issue tasks to the process pool
for ok, txt, meta in pool.imap(func=process_item, iterable=query_onet_news(), chunksize=os.cpu_count()):
total += 1
if ok:
total_words += meta['words']
total_verbs += meta['verbs']
total_nouns += meta['nouns']
total_len += meta['length']
total_docs += 1
total_sentences += meta['sentences']
total_punctuations += meta['punctuations']
total_symbols += meta['symbols']
total_stopwords += meta['stopwords']
ar.add_data(txt, meta = meta)
added += 1
print("Added "+str(total)+"/"+str(added)+" " + meta.get('url'))
else:
print("Skipping "+str(total)+"/"+str(added))
# Close the process pool
pool.close()
# Wait for all tasks to complete
pool.join()
ar.commit()
data_files= glob.glob('./data/*')
file_size = 0
#This solves an issue where data_files remains locked after ar commiting, causing error on cleanup
ar = None
for f in data_files:
if f.endswith('.zst'):
shutil.copy(f, os.path.join(file_name_zst))
file_size = os.path.getsize(file_name_zst)
os.remove(f)
manifest = {"project" : "SpeakLeash", "name": "onet_pl_news_corpus", "description": "Collection of news from onet.pl corpus", "license": "(c) www.onet.pl", "Category": "Internet", "language": "pl", "file_size" : file_size, "sources": [{"name": "onet_pl_news_corpus", "url": "https://wwww.onet.pl", "license": "(c) www.onet.pl"}], "stats": {"documents": total_docs, "sentences": total_sentences, "words" : total_words, "nouns" : total_nouns, "verbs" : total_verbs, "characters": total_len, "punctuations" : total_punctuations, "symbols" : total_symbols, "stopwords": total_stopwords}}
json_manifest = json.dumps(manifest, indent = 4)
with open(file_name_manifest, 'w') as mf:
mf.write(json_manifest)
print(time.time()-start_time)