-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcompute_metrics.py
201 lines (177 loc) · 6.98 KB
/
compute_metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import numpy as np
import json
import pandas as pd
QUES_TYPES = ['MCQ', 'MCQ(multiple)', 'Integer', 'Numeric']
models = [
# "Random",
# "GPT3_normal",
"GPT3.5_normal",
# "GPT4_normal",
# "GPT4_CoT",
# 'GPT4_CoT_self_refine',
# "GPT4_CoT+OneShot",
# "GPT4_CoT+SC@8",
'GPT4_0613_normal'
]
def get_aggregate(answers, question_type, single_threshold=None, multiple_threshold=None):
# Pass optional \tau_{single} and \tau_{multiple} parameters if needed for evaluation under risk.
if question_type == 'MCQ(multiple)' or question_type == 'MCQ':
letter_to_idx = {'A': 0, 'B': 1, 'C': 2, 'D': 3, 'None': 4}
idx_to_letter = {0: 'A', 1: 'B', 2: 'C', 3: 'D', 4: 'None'}
abcd = [0, 0, 0, 0, 0]
for ans in answers:
if ans == 'None':
abcd[letter_to_idx[ans]] += 1
else:
for c in ans:
abcd[letter_to_idx[c]] += 1
if question_type == 'MCQ':
abcd = abcd[:-1]
answer = idx_to_letter[np.argmax(abcd)]
if single_threshold is not None:
answer = answer if abcd[np.argmax(abcd)] / len(answers) >= single_threshold else "None"
else:
if multiple_threshold is not None:
options_selected = [idx_to_letter[x] for x in range(len(abcd)) if
abcd[x] >= len(answers) * multiple_threshold and idx_to_letter[x] != 'None']
else:
options_selected = [idx_to_letter[x] for x in range(len(abcd)) if
abcd[x] >= len(answers) / 2 and idx_to_letter[x] != 'None']
if len(options_selected) == 0:
answer = "None"
else:
answer = ''.join(sorted(options_selected))
else: # For integer and numeric answers, choose the most common response(other than None)
while "None" in answers:
answers.remove("None")
if len(answers) == 0:
answers = ["None"]
unique, counts = np.unique(answers, return_counts=True)
answer = unique[np.argmax(counts)]
return answer
def compute_score(gold, resp, question_type, year):
assert question_type in QUES_TYPES
if question_type == 'MCQ(multiple)':
gold = set([c for c in ['A', 'B', 'C', 'D'] if c in gold])
resp = set([c for c in ['A', 'B', 'C', 'D'] if c in resp])
if resp == gold:
return 1.0
else:
if len(resp - gold) == 0:
return 0.25 * len(resp)
return 0.0 # If response contains something not in the gold set, give 0
elif question_type == 'MCQ':
gold = set([c for c in ['A', 'B', 'C', 'D'] if c in gold])
resp = set([c for c in ['A', 'B', 'C', 'D'] if c in resp])
return int(gold == resp)
else:
if resp == "None":
return 0.0
g, r = float(gold), float(resp)
return int(abs(g - r) <= 0.01)
def construct_responses_table():
responses = {}
for model in models:
if "SC@" in model or "Random" == model:
continue
try:
with open(f"data/cp2_responses/{model}_responses/arabic_responses.json", encoding='utf-8') as f:
responses[model] = json.load(f)
print(f'Loaded {model}, number of responses: {len(responses[model])}')
except FileNotFoundError as e:
print(f"File not found for model {model}: {e}")
responses[model] = [] # Assign an empty list if file is not found
dataset = json.load(open('data/updated_arabic_dataset.json', encoding='utf-8'))
min_responses = min(len(responses[model]) for model in models if model not in ["SC@", "Random"])
extracts = {
"Type": [],
"Index": [],
"Description": [],
"Subject": [],
"Gold": [],
}
for model in models:
if model not in ["SC@", "Random"]:
extracts[f'{model}'] = []
for i in range(min_responses):
q = dataset[i]
extracts['Type'].append(q['type'])
extracts['Index'].append(q['index'])
extracts['Description'].append(q['description'])
extracts['Subject'].append(q['subject'])
extracts['Gold'].append(q['gold'])
for model in models:
if model in ["SC@", "Random"]:
continue
try:
assert q['question'] == responses[model][i]['question']
extracts[f'{model}'].append(responses[model][i]['extract'])
except Exception as e:
print(f"Error for model {model} at index {i}: {e}")
pd.DataFrame(extracts).to_csv('results/extracts.csv', index=False)
return pd.read_csv('results/extracts.csv', dtype=str)
responses = construct_responses_table()
output = []
for i, response in responses.iterrows():
out = {}
out["Type"] = response["Type"]
out["Index"] = response["Index"]
out["Description"] = response["Description"]
out["Subject"] = response["Subject"]
gold = response["Gold"]
out["Gold"] = gold
if response["Type"] == "MCQ":
out["Random"] = 0.25
elif response["Type"] == "MCQ(multiple)":
num_ans = len(gold)
if num_ans == 1:
out["Random"] = 0.0625
elif num_ans == 2:
out["Random"] = 0.09375
elif num_ans == 3:
out["Random"] = 0.203125
elif num_ans == 4:
out["Random"] = 0.5
else:
out["Random"] = 0
for model in models:
if model == "Random":
continue
resp = response[f"{model}"]
if not isinstance(resp, str):
resp = "None"
out[f"{model}"] = resp
out[f'{model}'] = compute_score(gold, resp, out["Type"], out["Description"])
out[f'Max'] = 1
output.append(out)
df = pd.DataFrame()
df['Type'] = [x['Type'] for x in output]
df['Index'] = [x['Index'] for x in output]
df['Description'] = [x['Description'] for x in output]
df['Subject'] = [x['Subject'] for x in output]
df['Gold'] = [x['Gold'] for x in output]
df['Random'] = [x['Random'] for x in output]
for model in models:
df[f"{model}"] = [
x.get(f"{model}", "None") for x in output]
df[f"{model}"] = [x.get(f"{model}", 0) for x in output]
df.to_csv(f"results/scores.csv", index=False)
modes = ['overall', 'type_wise', 'subject_wise']
for mode in modes:
col_dict = {}
for model in models:
col_dict[f'{model}'] = ['mean']
if mode != 'overall':
col_dict[f'{models[0]}'].insert(0, 'count')
if mode == 'overall':
grouped_multiple = df.agg(col_dict)
elif mode == 'type_wise':
grouped_multiple = df.groupby(['Type']).agg(col_dict)
elif mode == 'subject_wise':
grouped_multiple = df.groupby(['Subject']).agg(col_dict)
if mode != 'overall':
grouped_multiple.columns = ['count'] + models
grouped_multiple = grouped_multiple.reset_index()
grouped_multiple = grouped_multiple.round(3)
grouped_multiple.to_csv(f"results/aggregated_scores_{mode}.csv", index=False)
print("Done!")