forked from twissandra/twissandra
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathstorage-conf.xml
372 lines (338 loc) · 16.4 KB
/
storage-conf.xml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
<!--
~ Licensed to the Apache Software Foundation (ASF) under one
~ or more contributor license agreements. See the NOTICE file
~ distributed with this work for additional information
~ regarding copyright ownership. The ASF licenses this file
~ to you under the Apache License, Version 2.0 (the
~ "License"); you may not use this file except in compliance
~ with the License. You may obtain a copy of the License at
~
~ http://www.apache.org/licenses/LICENSE-2.0
~
~ Unless required by applicable law or agreed to in writing,
~ software distributed under the License is distributed on an
~ "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
~ KIND, either express or implied. See the License for the
~ specific language governing permissions and limitations
~ under the License.
-->
<Storage>
<!--======================================================================-->
<!-- Basic Configuration -->
<!--======================================================================-->
<!--
~ The name of this cluster. This is mainly used to prevent machines in
~ one logical cluster from joining another.
-->
<ClusterName>Twissandra Cluster</ClusterName>
<!--
~ Turn on to make new [non-seed] nodes automatically migrate the right data
~ to themselves. (If no InitialToken is specified, they will pick one
~ such that they will get half the range of the most-loaded node.)
~ If a node starts up without bootstrapping, it will mark itself bootstrapped
~ so that you can't subsequently accidently bootstrap a node with
~ data on it. (You can reset this by wiping your data and commitlog
~ directories.)
~
~ Off by default so that new clusters and upgraders from 0.4 don't
~ bootstrap immediately. You should turn this on when you start adding
~ new nodes to a cluster that already has data on it. (If you are upgrading
~ from 0.4, start your cluster with it off once before changing it to true.
~ Otherwise, no data will be lost but you will incur a lot of unnecessary
~ I/O before your cluster starts up.)
-->
<AutoBootstrap>false</AutoBootstrap>
<!--
~ Keyspaces and ColumnFamilies:
~ A ColumnFamily is the Cassandra concept closest to a relational
~ table. Keyspaces are separate groups of ColumnFamilies. Except in
~ very unusual circumstances you will have one Keyspace per application.
~ There is an implicit keyspace named 'system' for Cassandra internals.
-->
<Keyspaces>
<Keyspace Name="Twissandra">
<!--
~ ColumnFamily definitions have one required attribute (Name)
~ and several optional ones.
~
~ The CompareWith attribute tells Cassandra how to sort the columns
~ for slicing operations. The default is BytesType, which is a
~ straightforward lexical comparison of the bytes in each column.
~ Other options are AsciiType, UTF8Type, LexicalUUIDType, TimeUUIDType,
~ and LongType. You can also specify the fully-qualified class
~ name to a class of your choice extending
~ org.apache.cassandra.db.marshal.AbstractType.
~
~ SuperColumns have a similar CompareSubcolumnsWith attribute.
~
~ BytesType: Simple sort by byte value. No validation is performed.
~ AsciiType: Like BytesType, but validates that the input can be
~ parsed as US-ASCII.
~ UTF8Type: A string encoded as UTF8
~ LongType: A 64bit long
~ LexicalUUIDType: A 128bit UUID, compared lexically (by byte value)
~ TimeUUIDType: a 128bit version 1 UUID, compared by timestamp
~
~ (To get the closest approximation to 0.3-style supercolumns, you
~ would use CompareWith=UTF8Type CompareSubcolumnsWith=LongType.)
~
~ An optional `Comment` attribute may be used to attach additional
~ human-readable information about the column family to its definition.
~
~ The optional KeysCached attribute specifies
~ the number of keys per sstable whose locations we keep in
~ memory in "mostly LRU" order. (JUST the key locations, NOT any
~ column values.) Specify a fraction (value less than 1), a percentage
~ (ending in a % sign) or an absolute number of keys to cache.
~ KeysCached defaults to 200000 keys.
~
~ The optional RowsCached attribute specifies the number of rows
~ whose entire contents we cache in memory. Do not use this on
~ ColumnFamilies with large rows, or ColumnFamilies with high write:read
~ ratios. Specify a fraction (value less than 1), a percentage (ending in
~ a % sign) or an absolute number of rows to cache.
~ RowsCached defaults to 0, i.e., row cache is off by default.
~
~ Remember, when using caches as a percentage, they WILL grow with
~ your data set!
-->
<ColumnFamily CompareWith="UTF8Type" Name="User"/>
<ColumnFamily CompareWith="BytesType" Name="Username"/>
<ColumnFamily CompareWith="BytesType" Name="Friends"/>
<ColumnFamily CompareWith="BytesType" Name="Followers"/>
<ColumnFamily CompareWith="UTF8Type" Name="Tweet"/>
<ColumnFamily CompareWith="LongType" Name="Timeline"/>
<ColumnFamily CompareWith="LongType" Name="Userline"/>
<!--
~ Strategy: Setting this to the class that implements
~ IReplicaPlacementStrategy will change the way the node picker works.
~ Out of the box, Cassandra provides
~ org.apache.cassandra.locator.RackUnawareStrategy and
~ org.apache.cassandra.locator.RackAwareStrategy (place one replica in
~ a different datacenter, and the others on different racks in the same
~ one.)
-->
<ReplicaPlacementStrategy>org.apache.cassandra.locator.RackUnawareStrategy</ReplicaPlacementStrategy>
<!-- Number of replicas of the data -->
<ReplicationFactor>1</ReplicationFactor>
<!--
~ EndPointSnitch: Setting this to the class that implements
~ AbstractEndpointSnitch, which lets Cassandra know enough
~ about your network topology to route requests efficiently.
~ Out of the box, Cassandra provides org.apache.cassandra.locator.EndPointSnitch,
~ and PropertyFileEndPointSnitch is available in contrib/.
-->
<EndPointSnitch>org.apache.cassandra.locator.EndPointSnitch</EndPointSnitch>
</Keyspace>
</Keyspaces>
<!--
~ Authenticator: any IAuthenticator may be used, including your own as long
~ as it is on the classpath. Out of the box, Cassandra provides
~ org.apache.cassandra.auth.AllowAllAuthenticator and,
~ org.apache.cassandra.auth.SimpleAuthenticator
~ (SimpleAuthenticator uses access.properties and passwd.properties by
~ default).
~
~ If you don't specify an authenticator, AllowAllAuthenticator is used.
-->
<Authenticator>org.apache.cassandra.auth.AllowAllAuthenticator</Authenticator>
<!--
~ Partitioner: any IPartitioner may be used, including your own as long
~ as it is on the classpath. Out of the box, Cassandra provides
~ org.apache.cassandra.dht.RandomPartitioner,
~ org.apache.cassandra.dht.OrderPreservingPartitioner, and
~ org.apache.cassandra.dht.CollatingOrderPreservingPartitioner.
~ (CollatingOPP colates according to EN,US rules, not naive byte
~ ordering. Use this as an example if you need locale-aware collation.)
~ Range queries require using an order-preserving partitioner.
~
~ Achtung! Changing this parameter requires wiping your data
~ directories, since the partitioner can modify the sstable on-disk
~ format.
-->
<Partitioner>org.apache.cassandra.dht.RandomPartitioner</Partitioner>
<!--
~ If you are using an order-preserving partitioner and you know your key
~ distribution, you can specify the token for this node to use. (Keys
~ are sent to the node with the "closest" token, so distributing your
~ tokens equally along the key distribution space will spread keys
~ evenly across your cluster.) This setting is only checked the first
~ time a node is started.
~ This can also be useful with RandomPartitioner to force equal spacing
~ of tokens around the hash space, especially for clusters with a small
~ number of nodes.
-->
<InitialToken></InitialToken>
<!--
~ Directories: Specify where Cassandra should store different data on
~ disk. Keep the data disks and the CommitLog disks separate for best
~ performance
-->
<CommitLogDirectory>/var/lib/cassandra/commitlog</CommitLogDirectory>
<DataFileDirectories>
<DataFileDirectory>/var/lib/cassandra/data</DataFileDirectory>
</DataFileDirectories>
<!--
~ Addresses of hosts that are deemed contact points. Cassandra nodes
~ use this list of hosts to find each other and learn the topology of
~ the ring. You must change this if you are running multiple nodes!
-->
<Seeds>
<Seed>127.0.0.1</Seed>
</Seeds>
<!-- Miscellaneous -->
<!-- Time to wait for a reply from other nodes before failing the command -->
<RpcTimeoutInMillis>10000</RpcTimeoutInMillis>
<!-- Size to allow commitlog to grow to before creating a new segment -->
<CommitLogRotationThresholdInMB>128</CommitLogRotationThresholdInMB>
<!-- Local hosts and ports -->
<!--
~ Address to bind to and tell other nodes to connect to. You _must_
~ change this if you want multiple nodes to be able to communicate!
~
~ Leaving it blank leaves it up to InetAddress.getLocalHost(). This
~ will always do the Right Thing *if* the node is properly configured
~ (hostname, name resolution, etc), and the Right Thing is to use the
~ address associated with the hostname (it might not be).
-->
<ListenAddress>localhost</ListenAddress>
<!-- internal communications port -->
<StoragePort>7000</StoragePort>
<!--
~ The address to bind the Thrift RPC service to. Unlike ListenAddress
~ above, you *can* specify 0.0.0.0 here if you want Thrift to listen on
~ all interfaces.
~
~ Leaving this blank has the same effect it does for ListenAddress,
~ (i.e. it will be based on the configured hostname of the node).
-->
<ThriftAddress>localhost</ThriftAddress>
<!-- Thrift RPC port (the port clients connect to). -->
<ThriftPort>9160</ThriftPort>
<!--
~ Whether or not to use a framed transport for Thrift. If this option
~ is set to true then you must also use a framed transport on the
~ client-side, (framed and non-framed transports are not compatible).
-->
<ThriftFramedTransport>true</ThriftFramedTransport>
<!--======================================================================-->
<!-- Memory, Disk, and Performance -->
<!--======================================================================-->
<!--
~ Access mode. mmapped i/o is substantially faster, but only practical on
~ a 64bit machine (which notably does not include EC2 "small" instances)
~ or relatively small datasets. "auto", the safe choice, will enable
~ mmapping on a 64bit JVM. Other values are "mmap", "mmap_index_only"
~ (which may allow you to get part of the benefits of mmap on a 32bit
~ machine by mmapping only index files) and "standard".
~ (The buffer size settings that follow only apply to standard,
~ non-mmapped i/o.)
-->
<DiskAccessMode>auto</DiskAccessMode>
<!--
~ Size of compacted row above which to log a warning. (If compacted
~ rows do not fit in memory, Cassandra will crash. This is explained
~ in http://wiki.apache.org/cassandra/CassandraLimitations and is
~ scheduled to be fixed in 0.7.)
-->
<RowWarningThresholdInMB>512</RowWarningThresholdInMB>
<!--
~ Buffer size to use when performing contiguous column slices. Increase
~ this to the size of the column slices you typically perform.
~ (Name-based queries are performed with a buffer size of
~ ColumnIndexSizeInKB.)
-->
<SlicedBufferSizeInKB>64</SlicedBufferSizeInKB>
<!--
~ Buffer size to use when flushing memtables to disk. (Only one
~ memtable is ever flushed at a time.) Increase (decrease) the index
~ buffer size relative to the data buffer if you have few (many)
~ columns per key. Bigger is only better _if_ your memtables get large
~ enough to use the space. (Check in your data directory after your
~ app has been running long enough.) -->
<FlushDataBufferSizeInMB>32</FlushDataBufferSizeInMB>
<FlushIndexBufferSizeInMB>8</FlushIndexBufferSizeInMB>
<!--
~ Add column indexes to a row after its contents reach this size.
~ Increase if your column values are large, or if you have a very large
~ number of columns. The competing causes are, Cassandra has to
~ deserialize this much of the row to read a single column, so you want
~ it to be small - at least if you do many partial-row reads - but all
~ the index data is read for each access, so you don't want to generate
~ that wastefully either.
-->
<ColumnIndexSizeInKB>64</ColumnIndexSizeInKB>
<!--
~ Flush memtable after this much data has been inserted, including
~ overwritten data. There is one memtable per column family, and
~ this threshold is based solely on the amount of data stored, not
~ actual heap memory usage (there is some overhead in indexing the
~ columns).
-->
<MemtableThroughputInMB>64</MemtableThroughputInMB>
<!--
~ Throughput setting for Binary Memtables. Typically these are
~ used for bulk load so you want them to be larger.
-->
<BinaryMemtableThroughputInMB>256</BinaryMemtableThroughputInMB>
<!--
~ The maximum number of columns in millions to store in memory per
~ ColumnFamily before flushing to disk. This is also a per-memtable
~ setting. Use with MemtableThroughputInMB to tune memory usage.
-->
<MemtableOperationsInMillions>0.3</MemtableOperationsInMillions>
<!--
~ The maximum time to leave a dirty memtable unflushed.
~ (While any affected columnfamilies have unflushed data from a
~ commit log segment, that segment cannot be deleted.)
~ This needs to be large enough that it won't cause a flush storm
~ of all your memtables flushing at once because none has hit
~ the size or count thresholds yet. For production, a larger
~ value such as 1440 is recommended.
-->
<MemtableFlushAfterMinutes>60</MemtableFlushAfterMinutes>
<!--
~ Unlike most systems, in Cassandra writes are faster than reads, so
~ you can afford more of those in parallel. A good rule of thumb is 2
~ concurrent reads per processor core. Increase ConcurrentWrites to
~ the number of clients writing at once if you enable CommitLogSync +
~ CommitLogSyncDelay. -->
<ConcurrentReads>8</ConcurrentReads>
<ConcurrentWrites>32</ConcurrentWrites>
<!--
~ CommitLogSync may be either "periodic" or "batch." When in batch
~ mode, Cassandra won't ack writes until the commit log has been
~ fsynced to disk. It will wait up to CommitLogSyncBatchWindowInMS
~ milliseconds for other writes, before performing the sync.
~ This is less necessary in Cassandra than in traditional databases
~ since replication reduces the odds of losing data from a failure
~ after writing the log entry but before it actually reaches the disk.
~ So the other option is "periodic," where writes may be acked immediately
~ and the CommitLog is simply synced every CommitLogSyncPeriodInMS
~ milliseconds.
-->
<CommitLogSync>periodic</CommitLogSync>
<!--
~ Interval at which to perform syncs of the CommitLog in periodic mode.
~ Usually the default of 10000ms is fine; increase it if your i/o
~ load is such that syncs are taking excessively long times.
-->
<CommitLogSyncPeriodInMS>10000</CommitLogSyncPeriodInMS>
<!--
~ Delay (in milliseconds) during which additional commit log entries
~ may be written before fsync in batch mode. This will increase
~ latency slightly, but can vastly improve throughput where there are
~ many writers. Set to zero to disable (each entry will be synced
~ individually). Reasonable values range from a minimal 0.1 to 10 or
~ even more if throughput matters more than latency.
-->
<!-- <CommitLogSyncBatchWindowInMS>1</CommitLogSyncBatchWindowInMS> -->
<!--
~ Time to wait before garbage-collection deletion markers. Set this to
~ a large enough value that you are confident that the deletion marker
~ will be propagated to all replicas by the time this many seconds has
~ elapsed, even in the face of hardware failures. The default value is
~ ten days.
-->
<GCGraceSeconds>864000</GCGraceSeconds>
</Storage>