-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathbinary_float.ml
112 lines (94 loc) · 3.02 KB
/
binary_float.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
(* ========================================================================== *)
(* FPTaylor: A Tool for Rigorous Estimation of Round-off Errors *)
(* *)
(* Author: Alexey Solovyev, University of Utah *)
(* *)
(* This file is distributed under the terms of the MIT license *)
(* ========================================================================== *)
(* -------------------------------------------------------------------------- *)
(* Unbounded binary floating-point numbers *)
(* -------------------------------------------------------------------------- *)
open Big_int
open Num
open Rounding
type bin_float = {
sign : bool;
significand : big_int;
exponent : int;
}
let mk_bin_float s m e = {
sign = s;
significand = m;
exponent = e;
}
let string_of_bin_float x =
let s = if x.sign then "-" else "" in
Format.sprintf "%s%s * 2^%d" s (string_of_big_int x.significand) x.exponent;;
let print_bin_float x =
Format.print_string (string_of_bin_float x);;
let neg_bin_float x = {x with sign = not x.sign};;
let mk_pos_bin_float = mk_bin_float false
let mk_neg_bin_float = mk_bin_float true
let bf0 = mk_pos_bin_float zero_big_int 0
let num_of_bin_float x =
let v = Big_int x.significand */ (Int 2 **/ Int x.exponent) in
if x.sign then minus_num v else v;;
let is_even_num r =
sign_num (mod_num r (Int 2)) = 0;;
(* Returns a binary float x = (-1)^s * m * 2^e such that *)
(* 2^(p - 1) <= m < 2^p and x approximates r *)
(* (if r = 0 then m = 0) *)
let bin_float_of_num p rnd r =
let _ = assert (p > 0) in
let half = Int 1 // Int 2 in
let next m e =
let t = succ_num m in
if t =/ (Int 2 **/ Int p) then
t // Int 2, succ e
else
t, e
in
let bin_float_of_pos_num rnd r =
let n = More_num.log2_num r in
let k = n + 1 - p in
let y = (Int 2 **/ Int (-k)) */ r in
let low = integer_num y in
let m, e =
if low =/ y then
low, k
else
match rnd with
| Rnd_down | Rnd_0 -> low, k
| Rnd_up -> next low k
| Rnd_ne ->
let d = y -/ low in
begin
match (compare_num d half) with
| -1 -> low, k
| 1 -> next low k
| _ ->
if is_even_num low then
low, k
else
next low k
end in
mk_pos_bin_float (big_int_of_num m) e
in
match sign_num r with
| 0 -> bf0
| 1 -> bin_float_of_pos_num rnd r
| _ ->
let rnd =
begin
match rnd with
| Rnd_up -> Rnd_down
| Rnd_down -> Rnd_up
| _ -> rnd
end in
neg_bin_float (bin_float_of_pos_num rnd (minus_num r));;
let round_num rnd n =
(* TODO: subnormal numbers and infinities *)
let f = bin_float_of_num (-rnd.eps_exp) rnd.rnd_type n in
num_of_bin_float f
(* TODO: subnormal numbers and infinities *)
let is_exact_fp_const rnd n = round_num rnd n =/ n