-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathl4_to_prolog.cljc
345 lines (290 loc) · 14.9 KB
/
l4_to_prolog.cljc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
(ns l4-lp.syntax.l4-to-prolog
(:require #?(:cljs [cljs-bean.core :as bean])
[clojure.edn :as edn]
[l4-lp.syntax.mixfix-parser :refer [l4-mixfix->prolog-prefix]]
[l4-lp.syntax.symbol-db :as symbol-db]
[meander.epsilon :as m]
[meander.strategy.epsilon :as r]
[tupelo.string :as str]))
(defn- l4->parse-tree
"Parses strings representing L4 programs into a parse tree."
[l4-program]
(let [parens-if-needed
(r/match
(m/re #"^\(.*\)$" ?edn-str-with-parens) ?edn-str-with-parens
?edn-str (str "(" ?edn-str ")"))]
(if (string? l4-program)
(-> l4-program str/trim parens-if-needed edn/read-string)
l4-program)))
(def ^:private l4-parse-tree->parse-tree-of-rules
"Identify rules (ie Horn clauses) in the raw parse tree and restructure the
tree so that each rule is grouped into its own subtree."
(r/rewrite
(m/with
[%horn-clause ((m/pred '#{DECIDE QUERY}) _ & _)
%rule (m/and (m/or ((m/pred '#{GIVEN GIVETH}) . _ ..1 & %horn-clause)
%horn-clause)
!rules)
%rules (m/or (& %rule & %rules) (%rule & %rules) (& %rule) (%rule))]
%rules)
(!rules ...)))
(def ^:private l4->parse-tree-of-rules
"Parses an L4 program into a parse tree, with each subtree of the root node
representing the parse tree of an L4 rule (which represents a Horn clause)."
(r/pipe l4->parse-tree l4-parse-tree->parse-tree-of-rules))
(def ^:private time-units
(let [singular-time-units '#{DAY WEEK MONTH YEAR}
unit->unit+plural
(r/match
(m/and (m/symbol ?time-unit-str) ?time-unit)
[?time-unit (symbol (str ?time-unit-str "S"))])]
(->> singular-time-units
(eduction (mapcat unit->unit+plural))
(into #{}))))
(def ^:private l4-rule->prolog-rule
"Transpiles and desugars the parse tree of an L4 rule (which represents a
Horn clause) into (an S-exp representation of) Prolog / Datalog, which we
use as our intermediate AST.
Formally, this is specified as an equational theory axiomatising a
interpretation function ⟦.⟧ mapping from the L4 term algebra to that of
Prolog.
For the implementation, we:
1. Define a term rewriting system (TRS) that orients the equational theory
from left to right.
Each rewrite rule in the TRS defined here is accompanied by a comment
axiomatisating it as an equation in the equational theory.
2. Traverse the L4 rule (viewed as a tree) in a top-down manner, using the
TRS to rewrite and transform each node.
Note that:
- Our denotational semantics relies on:
- A standard big step semantics with first-class continuations.
This is used to axiomatise some of our equations / rewrite rules which
manipulate nested terms and their contexts (captured as continuations),
like the rules which recursively:
- traverse the head and body of an L4 rule to identify symbols which
appear in the GIVEN and GIVETH clauses, so that they can be labelled as
variables.
- flatten nested function applications into a conjunction of Prolog terms.
- Standard Datalog semantics.
This is used to axiomatise a rewrite rule that transpiles L4 symbols to
Prolog ones by looking up in an embedded Datalog database.
(Datalog is used here because we want a bidirectional map that can convert
Prolog symbols back into L4 when we post-process results from Prolog engines.)
- The resulting S-exp AST is also valid Prolog code because each S-exp
in the AST is also a Prolog M-exp. For instance, an S-exp of the form
( p '( x₀ ', ... ', xₙ ') ) is used to represent the Prolog term
p(x₀, ..., xₙ)
- Prolog is a universal input format for Horn clause solvers like
Z3, Prolog, Datalog and ASP, so that the resulting S-exp AST can be
readily fed into such tools for static analysis and execution."
(r/top-down
(r/rewrite
;; -----------------------------------------------
;; ⟦(GIVETH ?x₀ ... ?xₙ)⟧ = ⟦((GIVEN ?x₀ ... ?xₙ))⟧
(GIVETH . !xs ..1) ((GIVEN & (!xs ...)))
;; --------------------------------------------
;; ⟦(?x₀ ... ?xₙ OTHERWISE)⟧ = ⟦((?x₀ ... ?xₙ))⟧
(!xs ..1 OTHERWISE) ((!xs ...))
;; TODO: Document semantics.
(GIVEN
. (m/with [%var (m/symbol nil !vars)]
(m/or (m/pred '#{GIVEN GIVETH}) %var (m/seqable %var & _)))
..1
(m/pred #{'DECIDE 'QUERY} ?decide-query) & ?horn-clause)
((GIVEN #{^& (!vars ...)} ?decide-query & ?horn-clause))
;; ⊢ ?symbol ∈ ?givens
;; ⊢ (symbol nil ?symbol) ⇓ ?symbol'
;; ⊢ (symbol "var" ?symbol) ⇓ ?var
;; (?C, λx. throw (cont C) x) ⊢ (?C ?var) ⇓ ?e
;; ----------------------------------------------------------------------
;; ⟦(GIVEN ?givens ... C[?symbol'] ...)⟧ = ⟦((GIVEN ?givens ... ?e ...))⟧
;;
;; Here, C[.] denotes contexts defined in the obvious way, ie:
;; C ::= [.] | (C ... C) | [C ... C] | #{C ... C} | {C C,..., C C}
(GIVEN (m/and #{?symbol ^& _} ?givens) & (m/$ ?C (m/symbol nil ?symbol)))
((GIVEN ?givens ~(?C (symbol "var" ?symbol))))
(GIVEN _ & ?horn-clause) ?horn-clause
;; ?op ∈ {IF WHEN WHERE}
;; ---------------------------------------------------
;; ⟦(DECIDE ?head₀ ... ?headₘ ?op ?body₀ ... ?bodyₙ)⟧ =
;; ⟦(:- (?head₀ ... ?headₘ) (?body₀ ... ?bodyₙ))⟧
(DECIDE . !head ..1 (m/pred '#{IF WHEN WHERE}) . !body ..1)
((~(symbol ":-") (!head ...) (!body ...)))
;; -------------------------------------------------
;; ⟦(DECIDE ?head₀ ... ?headₙ)⟧ = ⟦(?head₀ ... ?headₙ)⟧
(DECIDE . !head ..1) ((!head ...))
(QUERY . !query ..1) (QUERY ((!query ...)))
;; TODO: Formalise BoolStruct parser + transpiler.
(m/with [%bool-op (m/pred '#{AND OR UNLESS} !bool-op)
%conjunct-disjunct (!xs ..1 %bool-op)
%xs (m/or (& %conjunct-disjunct & %xs) %conjunct-disjunct)]
(& %xs . !x ..1))
((!xs ...) !bool-op ... (!x ...))
;; ?op ∈ {MIN MAX PRODUCT SUM}
;; ?comparison ∈ {IS EQUALS = == < <= =< > >=}
;; ⊢ symbol? ?arg ∨ ∀ x ∈ ?arg, symbol? x ∨ number? x
;; ?var is a fresh variable
;; (?C, λx. throw (cont C) x) ⊢ (?C ?var) ⇓ ?rhs
;; -----------------------------------------------------------------------------------
;; ⟦(?lhs ?comparison C[(?op ?arg)]⟧ = ⟦((?op ?arg ?var) AND (?lhs ?comparison ?rhs))⟧
;; ?op ∈ {MIN MAX PRODUCT SUM}
;; ?comparison ∈ {IS EQUALS = == < <= =< > >=}
;; ⊢ symbol? ?arg ∨ ∀ x ∈ ?arg, symbol? x ∨ number? x
;; ?var is a fresh variable
;; (?C, λx. throw (cont C) x) ⊢ (?C ?var) ⇓ ?lhs
;; -----------------------------------------------------------------------------------
;; ⟦(C[(?op ?arg)] ?comparison ?rhs⟧ = ⟦((?op ?arg ?var) AND (?lhs ?comparison ?rhs))⟧
(m/let [?coll-of-symbols-and-nums
#(every? (some-fn symbol? number?) %)
?vec-of-symbols-and-nums
(every-pred vector? ?coll-of-symbols-and-nums)
?fresh-var (delay (->> (gensym "var__") str (symbol "var")))]
(m/with
[%has-nested-arithmetic-expr
(m/$ ?C ((m/pred '#{MIN MAX PRODUCT SUM MINUS DIVIDE} ?op)
& (m/or
((m/or (m/and (m/symbol _) ?arg)
(m/pred ?vec-of-symbols-and-nums ?arg)))
(m/pred ?coll-of-symbols-and-nums
(m/app #(into [] %) ?arg)))))
%comparison
(m/pred '#{IS EQUALS = == < <= =< > >=} ?comparison)]
(m/or (m/and (& %has-nested-arithmetic-expr %comparison & ?rhs)
(m/let [?lhs (?C @?fresh-var)]))
(m/and (& ?lhs %comparison & %has-nested-arithmetic-expr)
(m/let [?rhs (?C @?fresh-var)])))))
((?op ?arg ~(deref ?fresh-var)) AND (?lhs ?comparison ?rhs))
;; ∀ 0 ≤ i ≤ n - 1, ?elementᵢ ≠ IS ∧ ?elementᵢ₊₁ ≠ IN
;; ---------------------------------------------------------------------
;; ⟦(?element₀ ... ?elementₘ IS IN ?collection₀ ... ?collectionₙ)⟧ =
;; ⟦(is_in (?element₀ ... ?elementₘ) (?collection₀ ... ?collectionₙ))⟧
(. !element ..1 IS IN . !collection ..1)
((is_in (!element ...) (!collection ...)))
;; ∀ 0 ≤ i ≤ n - 2, ?elementᵢ ≠ IS ∧ ?elementᵢ₊₁ ≠ NOT ?elementᵢ₊₂ ≠ IN
;; ---------------------------------------------------------------------
;; ⟦(?element₀ ... ?elementₘ IS IN ?collection₀ ... ?collectionₙ)⟧ =
;; ⟦(is_in (?element₀ ... ?elementₘ) (?collection₀ ... ?collectionₙ))⟧
(. !element ..1 IS NOT IN . !collection ..1)
(NOT ((!element ...) IS IN (!collection ...)))
;; ∀ 0 ≤ i ≤ n - 1, ?elementᵢ ≠ IS ∧ ?elementᵢ₊₁ ≠ NOT
;; ?collection₀ ≠ IN
;; ---------------------------------------------------------------------
;; ⟦(?element₀ ... ?elementₘ IS NOT ?collection₀ ... ?collectionₙ)⟧ =
;; ⟦(NOT ((?element₀ ... ?elementₘ) IS (?collection₀ ... ?collectionₙ))⟧
(. !lhs ..1 IS NOT . !rhs ..1)
(NOT ((!lhs ...) IS (!rhs ...)))
;; ------------------------------------------------------------------
;; ⟦(NOT ?element₀ ... ?elementₙ)⟧ = ⟦(NOT (?element₀ ... ?elementₙ))⟧
(NOT . !xs ..1) (NOT (!xs ...))
;; ∀ 0 ≤ i ≤ n, ?dateᵢ ≠ IS
;; ----------------------------------------
;; ⟦(?date₀ ... ?dateₙ IS A VALID DATE)⟧ =
;; ⟦(is_valid_date (?date₀ ... ?dateₘ))⟧
(. !date ..1 IS A VALID DATE)
((is_valid_date (!date ...)))
;; ?number ∈ ℕ
;; ?time-unit ∈ {DAY DAYS WEEK WEEKS MONTH MONTHS YEAR YEARS}
;; -----------------------------------------------------------
;; ⟦(?date₀ + ?number ?time-unit IS ?date₁)⟧ =
;; ⟦(date_add_duration ?date₀ (?time-unit ?number) ?date₁)⟧
;; ?number ∈ ℕ
;; ?time-unit ∈ {DAY DAYS WEEK WEEKS MONTH MONTHS YEAR YEARS}
;; -----------------------------------------------------------
;; ⟦(?date₀ - ?number ?time-unit IS ?date₁)⟧ =
;; ⟦(date_minus_duration ?date₀ (?time-unit ?number) ?date₁)⟧
(. ?date-0
(m/or (m/and + (m/let [?pred 'date_add_duration]))
(m/and - (m/let [?pred 'date_minus_duration])))
?number (m/pred ~time-units ?time-unit) IS ?date-1)
((?pred ?date-0 (?time-unit ?number) ?date-1))
;; ∀ 0 ≤ i ≤ m - 1, ?dateᵢ ≠ IS ∧ ?dateᵢ₊₁ ≠ WITHIN
;; ∀ 0 ≤ j ≤ n, ?numberⱼ ∉ {DAY DAYS WEEK WEEKS MONTH MONTHS YEAR YEARS}
;; ?unit ∈ {DAY DAYS WEEK WEEKS MONTH MONTHS YEAR YEARS}
;; ------------------------------------------------------------------------------------
;; ⟦(?date₀ ... ?dateₘ IS WITHIN ?number₀ ... ?numberₙ ?unit OF ?date'₀ ... ?date'ᵣ)⟧ =
;; ⟦(date_is_within_duration_of_date
;; (?date₀ ... ?dateₘ) (?number₀ ... ?numberₙ) (?date'₀ ... ?date'ᵣ))⟧
(. !date-0 ..1 IS WITHIN . !number ..1
(m/pred ~time-units ?time-unit) OF . !date-1 ..1)
((date_is_within_duration_of_date
(!date-0 ...) (?time-unit (!number ...)) (!date-1 ...)))
;; ∀ 0 ≤ i ≤ m, ?yearᵢ ∉ {-} ∀ 0 ≤ j ≤ n, ?monthⱼ ∉ {-}
;; -----------------------------------------------------------------------
;; ⟦(?year₀ ... ?yearₘ - ?month₀ ... ?monthₙ - ?day₀ ... ?dayᵣ)⟧ =
;; ⟦(date (?year₀ ... ?yearₘ) (?month₀ ... ?monthₙ) (?day₀ ... ?dayᵣ))⟧
(. !year ..1 - . !month ..1 - . !day ..1)
((date (!year ...) (!month ...) (!day ...)))
;; ?op ∈ math-list-ops ?lhsᵢ ∉ math-list-ops
;; -----------------------------------------------------
;; ⟦(?xs IS THE LIST OF ALL ?x SUCH THAT ?φ₀ ... ?φₙ)⟧ =
;; ⟦(findall ?x (?φ₀ ... ?φₙ) ?xs)⟧
(?xs IS THE LIST OF ALL ?x SUCH THAT & ?φ)
((findall ?x ?φ ?xs))
;; ---------------------------------------
;; ⟦[?x₀ ... ?xₙ]⟧ = [⟦?x₀⟧ , ... , ⟦?xₙ⟧]
[!xs ... !x] [!xs ~(symbol ",") ... !x]
;; Auxiliary stuff for parsing predicate applications that are presented
;; in mixfix form.
;; TODO: Formalise the semantics of this operation.
;;
;; We restrict mixfix parsing to seqs where there is > 1 item present,
;; because otherwise there is no need for this.
(_ _ & _ :as ?pred-app) ~(l4-mixfix->prolog-prefix ?pred-app)
;; --------------------------------------
;; ⟦[?x₀ ... ?xₙ]⟧ = [⟦?x₀⟧ , ... , ⟦?xₙ⟧]
[!xs ... ?x] [!xs ~(symbol ",") ... ?x]
;; ⊢ (symbol "var" ?var-name') ⇓ ?var-name
;; ⊢ (symbol (capitalize ?var-name')) ⇓ ?var-name''
;; ---------------------------------------------------
;; ⟦?var-name⟧ = ?var-name''
(m/symbol "var" ?var-name) ~(-> ?var-name str/capitalize symbol)
;; ⊢ is_l4_symbol? ?x
;; ⊢ (l4-symbol->prolog-symbol ?x) ⇓ ?prolog-symbol
;; --------------------------------------------------
;; ⟦?x⟧ = ?prolog-symbol
(m/app symbol-db/l4-symbol->prolog-symbol (m/some ?prolog-symbol))
?prolog-symbol
;; ⊢ atomic ?x ∧ ¬ is_l4_symbol? ?x
;; ----------------------------------
;; ⟦?x⟧ = ?x
?x ?x)))
(defn- remove-all-spaces [s]
(str/replace s #" " ""))
(defn l4->prolog-program+queries
"Given an L4 program, parses and transforms it into a map where:
- :queries is a vector of Prolog queries (as strings).
- :program is the Prolog program (as a string).
The input can either be an EDN string or Clojure data."
[l4-program]
(let [prolog-rules->prolog-program-rules+queries
(r/rewrite
(m/seqable (m/or (m/$ (QUERY & !queries)) !rules) ...)
{:queries (!queries ...)
:program-rules (!rules ...)})
prolog-rules->prolog-str
(fn [ending-str prolog-rules]
(->> prolog-rules
(eduction (mapcat (fn [prolog-rule]
[(into () prolog-rule) ending-str])))
(apply str)
remove-all-spaces))
prolog-program-rules+queries->prolog-program+queries-str
(r/match
{:queries ?queries :program-rules ?program-rules}
{:queries (->> ?queries (mapv #(prolog-rules->prolog-str "" %)))
:program (->> ?program-rules (prolog-rules->prolog-str ".\n"))})]
(->> l4-program
l4->parse-tree-of-rules
(eduction (map l4-rule->prolog-rule))
prolog-rules->prolog-program-rules+queries
prolog-program-rules+queries->prolog-program+queries-str)))
#?(:cljs
(defn l4->prolog-program+queries-js [l4-program]
(-> l4-program
l4->prolog-program+queries
bean/->js))
:clj
(defn l4->prolog-program+queries-java [l4-program]
(-> l4-program
l4->prolog-program+queries
java.util.Collections/unmodifiableMap)))