-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcnns_object_binary_classifications.py
84 lines (74 loc) · 2.57 KB
/
cnns_object_binary_classifications.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import numpy as np
import tensorflow as tf
from tensorflow.keras import layers
from tensorflow.keras.callbacks import EarlyStopping
import pathlib
import matplotlib.pyplot as plt
data_dir = './images'
data_dir = pathlib.Path(data_dir)
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
data_dir,
validation_split=0.2,
subset="training",
seed=123,
image_size=(256, 256),
batch_size=64
)
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
data_dir,
validation_split=0.2,
subset="validation",
seed=123,
image_size=(256,256),
batch_size=64
)
class_names = train_ds.class_names
print(class_names)
AUTOTUNE = tf.data.experimental.AUTOTUNE
train_ds = train_ds.cache().prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)
model = tf.keras.Sequential([
layers.experimental.preprocessing.Rescaling(1./255),
layers.Conv2D(64, 3, padding='same', activation='relu'),
layers.MaxPooling2D(),
layers.Dropout(0.2),
layers.Conv2D(64, 3, padding='same', activation='relu'),
layers.MaxPooling2D(),
layers.Dropout(0.2),
layers.Conv2D(64, 3, padding='same', activation='relu'),
layers.MaxPooling2D(),
layers.Dropout(0.2),
layers.Conv2D(32, 3, padding='same', activation='relu'),
layers.MaxPooling2D(),
layers.Dropout(0.2),
layers.Conv2D(32, 3, padding='same', activation='relu'),
layers.MaxPooling2D(),
layers.Dropout(0.2),
layers.Conv2D(32, 3, padding='same', activation='relu'),
layers.MaxPooling2D(),
layers.Dropout(0.2),
layers.Conv2D(32, 3, padding='same', activation='relu'),
layers.MaxPooling2D(),
layers.Dropout(0.2),
layers.Flatten(),
layers.Dense(128, activation='relu'),
layers.Dense(64, activation='relu'),
layers.Dense(16, activation='relu'),
layers.Dense(2) #numer of classes
])
model.compile(optimizer='adam', loss=tf.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy'])
history = model.fit(train_ds, validation_data=val_ds, epochs=100)
y_vloss = history.history['val_loss']
y_loss = history.history['loss']
y_acc = history.history['accuracy']
y_vacc = history.history['val_accuracy']
fig, (ax1, ax2) = plt.subplots(1,2)
ax1.plot(np.arange(len(y_vloss)), y_vloss, marker='.', c='red')
ax1.plot(np.arange(len(y_loss)), y_loss, marker='.', c='blue')
ax1.grid()
plt.setp(ax1, xlabel='epoch', ylabel='loss')
ax2.plot(np.arange(len(y_vacc)), y_vacc, marker='.', c='red')
ax2.plot(np.arange(len(y_acc)), y_acc, marker='.', c='blue')
ax2.grid()
plt.setp(ax2, xlabel='epoch', ylabel='loss')
plt.show()