-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathutils.py
50 lines (37 loc) · 1.23 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import torch
import torch.nn as nn
from envs import VecNormalize
# Get a render function
def get_render_func(venv):
if hasattr(venv, 'envs'):
return venv.envs[0].render
elif hasattr(venv, 'venv'):
return get_render_func(venv.venv)
elif hasattr(venv, 'env'):
return get_render_func(venv.env)
return None
def get_vec_normalize(venv):
if isinstance(venv, VecNormalize):
return venv
elif hasattr(venv, 'venv'):
return get_vec_normalize(venv.venv)
return None
# Necessary for my KFAC implementation.
class AddBias(nn.Module):
def __init__(self, bias):
super(AddBias, self).__init__()
self._bias = nn.Parameter(bias.unsqueeze(1))
def forward(self, x):
if x.dim() == 2:
bias = self._bias.t().view(1, -1)
else:
bias = self._bias.t().view(1, -1, 1, 1)
return x + bias
def init(module, weight_init, bias_init, gain=1):
weight_init(module.weight.data)
bias_init(module.bias.data)
return module
# https://github.com/openai/baselines/blob/master/baselines/common/tf_util.py#L87
def init_normc_(weight, gain=1):
weight.normal_(0, 1)
weight *= gain / torch.sqrt(weight.pow(2).sum(1, keepdim=True))